

Agilent 1260 Infinity Thermostatted Column Compartment

User Manual

Agilent Technologies

Notices

© Agilent Technologies, Inc. 2010-2012, 2013

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

G1316-90014

Edition

05/2013

Printed in Germany

Agilent Technologies Hewlett-Packard-Strasse 8 76337 Waldbronn

This product may be used as a component of an in vitro diagnostic system if the system is registered with the appropriate authorities and complies with the relevant regulations. Otherwise, it is intended only for general laboratory use.

Warranty

The material contained in this document is provided "as is," and is subiect to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

In This Guide...

This manual covers the Agilent 1260 Infinity Thermostatted Column Compartments (G1316A TCC).

1 Introduction to the Column Compartment

This chapter gives an introduction to the TCC, instrument overview and internal connectors.

2 Site Requirements and Specifications

This chapter provides information about site requirements and specifications for the module.

3 Installing the Column Compartment

This chapter describes the installation of the thermostatted column compartment.

4 Using the Module

This chapter explains the operational parameters of the module.

5 How to optimize the Column Compartment

This chapter provides information on how to optimize the thermostatted column compartement.

6 Troubleshooting and Diagnostics

Overview about the troubleshooting and diagnostic features.

7 Error Information

This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

8 Test Functions

This chapter describes the TCC's built in test functions.

9 Maintenance

This chapter describes the maintenance and repair of the TCC.

10 Parts for Maintenance

This chapter provides information on parts for maintenance.

11 Identifying Cables

This chapter provides information on cables used with the 1260 Infinity series of HPLC modules.

12 Hardware Information

This chapter describes the detector in more detail on hardware and electronics.

13 Appendix

This chapter provides addition information on safety, legal and web.

Contents

1 Introduction to the Column Compartment 9

Introduction 10 System Overview 13 Column-Identification System 16 Column Switching Valve (Optional) 18

2 Site Requirements and Specifications 21

Site Requirements 22 Physical Specifications 25 Performance Specifications 26

3 Installing the Column Compartment **27**

Unpacking the Column Compartment 28 Optimizing the Stack Configuration 29 Installation Information on Leak and Waste Handling 34 Installing the Column Compartment 38 Flow Connections of the Column Compartment 41 Placing Columns 45

4 Using the Module 47

Leak and Waste Handling 48 Solvent Information 49

5 How to optimize the Column Compartment 51

Optimizing the Performance of your Column Compartment 52

6 Troubleshooting and Diagnostics 53

Overview of the Module's Indicators and Test Functions54Status Indicators56Available Tests depending on User Interfaces58Agilent Lab Advisor Software59

Contents

7 Error Information 61

What Are Error Messages62General Error Messages63TCC Error Messages69

8 Test Functions 77

Thermostat Function Test78Pressure Test81Column Thermostat Temperature Calibration82

9 Maintenance 91

Warnings and Cautions 92 Introduction to Maintenance 94 Overview of Maintenance 95 Cleaning the Module 96 Changing Column Identification Tags 97 Replacing Head Parts of Column Switching Valve 99 Correcting Leaks 102 Replacing the Module's Firmware 103

10 Parts for Maintenance 105

Column Switching Valve 2 Position/6 Port 106 Kits 107 Plastic Parts 108 Leak Parts 109

11 Identifying Cables 111

Cable Overview 112 Analog Cables 114 **Remote Cables** 116 BCD Cables 119 CAN/LAN Cables 121 **External Contact Cable** 122 Agilent Module to PC 123 Agilent 1200 Module to Printer 124

12 Hardware Information 125

Firmware Description 126 Electrical Connections 129 Interfaces 131 Setting the 8-bit Configuration Switch (without On-Board LAN) 138 Instrument Layout 142

13 Appendix 143

General Safety Information 144 The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC) 147 Lithium Batteries Information 148 Radio Interference 149 Sound Emission 150 Use of Solvents 151 Agilent Technologies on Internet 152

Contents

1

Agilent 1260 Infinity TCC User Manual

Introduction to the Column Compartment

Introduction 10 System Overview 13 Leak and Waste Handling 13 Column-Identification System 16 Column Switching Valve (Optional) 18

This chapter gives an introduction to the TCC, instrument overview and internal connectors.

1 Introduction to the Column Compartment Introduction

Introduction

Main Features

The Agilent 1260 Infinity Thermostatted Column Compartment is a stackable temperature-controlled column compartment for LC. It is used for heating and cooling to meet extreme requirements of retention time reproducibility.

The main features are:

- Peltier heating and cooling from 10 degrees below ambient up to 80 °C with high heating and cooling speeds for maximum application flexibility and stability.
- Holds up to three 30 cm columns and optimized design gives minimum dead volumes and maximum efficiency.
- Two independently programmable heat exchangers contribute volumes of only 3 μL and 6 $\mu L.$
- Electronic column-identification module as standard for GLP documentation of column type and major column parameters.
- Optional high-quality Rheodyne[®] column switching valve with ceramic stator-face assemblies for prolonged lifetime.

For specifications, see "Performance Specifications" on page 26.

System Overview

The Concept of Heating and Cooling

The design of this thermostatted column compartment uses column heating and cooling devices with Peltier elements. The solvent entering the column compartment is heated up or cooled down to a settable temperature with two low-volume heat exchangers (3 μ l on left side, 6 μ l on right side), made of a short piece of capillary 0.17 mm i.d. leading through a heat exchanger. The heat exchanger is designed such that it can function simultaneously as an air heater. The shape of the heat exchanger surface allows the area around the column to be kept at a similar temperature level as the liquid running through the column. This is done by thermal convection and radiation between the heat exchanger fins. This design ensures that the column and the solvent flowing through it are almost at the same temperature.

Actual temperature control is accomplished at the heat exchanger. The solvent cools down or heats up on its transfer from the heating block to the column inlet. This depends on several factors: flow rate, setpoint temperature, ambient temperature and column dimensions.

In a flow-through temperature regulation system, there are necessarily slightly different temperatures at different positions. If, for example, the temperature set by the user is 40 °C, then the heat exchanger is regulated to a temperature of 40.8 °C which is different by a certain offset (here 0.8 °C). The solvent temperature at the column entry would be about 39 °C.

The actual temperature displayed on the user interface is always the derived temperature taken at the heat exchanger, corrected by the offset explained above.

Any type of heated column compartment brings one important consequence for column temperature equilibration. Before an equilibrium is reached, the whole mass of column, column packing, and solvent volume inside the column has to be brought to the selected temperature. This depends on several factors: flow rate, setpoint temperature, ambient temperature and column dimensions. The higher the flow rate, the faster the column equilibrates (due to thermostatted mobile phase). Figure 1 on page 12 shows a setpoint temperature of 40 °C. Some time after entering the setpoint the heat exchanger has reached its temperature and the control activity starts. The **TEMPERATURE NOT READY** signal will be cancelled 20 seconds after the sensed temperature was within a range of \pm 0.5 °C of the setpoint (other values can be set via the user interface). However this does not necessarily mean that the column has already reached the correct temperature. The equilibration of the column may take longer. Stability of the pressure signal is a good indication for equilibrium.

Figure 1 Equilibration of Heat Exchanger and Column Temperature

The temperature calibration and verification is described in the Service Manual.

System Overview

Leak and Waste Handling

The 1200 Infinity Series has been designed for safe leak and waste handling. It is important that all security concepts are understood and instructions are carefully followed.

1 Introduction to the Column Compartment

System Overview

Figure 2 Leak and waste handling concept (overview - typical stack configuration as an example)

The solvent cabinet (1) is designed to store a maximum volume of 6 L solvent. The maximum volume for an individual bottle stored in the solvent cabinet should not exceed 2.5 L. For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets (a printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet).

The leak pan (2) (individually designed in each module) guides solvents to the front of the module. The concept covers also leakages on internal parts (e.g. the detector's flow cell). The leak sensor in the leak pan stops the running system as soon as the leak detection level is reached.

The leak pan's outlet port (3, A) guides excessive overfill from one module to the next, as the solvent flows into the next module's leak funnel (3, B) and the connected corrugated waste tube (3, C). The corrugated waste tube guides the solvent to the next lower positioned module's leak tray and sensor.

The waste tube of the sampler's needle wash port (4) guides solvents to waste.

The condense drain outlet of the autosampler cooler (5) guides condensate to waste.

The waste tube of the purge valve (6) guides solvents to waste.

The waste tube connected to the leak pan outlet on each of the bottom instruments (7) guides the solvent to a suitable waste container.

Column-Identification System

The Agilent 1260 Infinity Thermostatted Column Compartment is equipped with a column-identification system. It allows to read and write column-specific information to and from an optionally available column-identification tag (part of the HPLC starter-kits available for 1220, 1260 and 1290 Infinity pumps or seperately as P/N 5062-8588).

Figure 3 Column-Identification System

Table 1 on page 17 shows the information that can be stored. The information fields can be edited via the user interface.

ltem	Example	Comment
Product number	799160D-552	
Serial number	950522	Date of manufacturing
Batch number	1675	
Geometry	100 mm × 2.1 mr	n
Stationary phase	ODS Hypersil	
Particle size	10 µm	
Number of injections	1267	See below.
Maximum pressure allowed	400 bar	
Maximum temperature recommended	70 °C	
Maximum pH recommended	12	
Column void volume		

 Table 1
 Column-Identification Module Information

The number of injections will be updated each run to create a column lifecycle (history). The user interface allows to edit all information.

NOTE

If a column switching valve (see "Column Switching Valve (Optional)" on page 18) is installed in the module, the update of the number of injections depends on the position of the column switching valve. For example, if the left column is selected, the right column is not updated, and vice versa. If no column switching valve is installed both sides are updated at the same time. 1 Introduction to the Column Compartment Column Switching Valve (Optional)

Column Switching Valve (Optional)

Two Column Selection

The valve can select either column 1 or column 2. The offline column is sealed by connecting head to tail. Switching should be done when the flow is off and the pressure is zero.

NOTE

Before switching the valve, switch off the pump or set the flow to zero. Keeping the flow on while the valve is switched can cause exceeding the maximum pressure. This will stop method or sequence execution.

Figure 6 Column 2 Active

1 Introduction to the Column Compartment

Column Switching Valve (Optional)

Precolumn Back-flushing

The sample is injected into series-connected precolumn and analytical column. After the valve has switched, the analytical column flow continues in normal direction. Only the precolumn is back-flushed, eluting highly retained peaks directly to the detector.

Figure 7 Precolumn Back-flushing

Site Requirements and Specifications

Site Requirements22Physical Specifications25Performance Specifications26

2

This chapter provides information about site requirements and specifications for the module.

2 Site Requirements and Specifications Site Requirements

Site Requirements

A suitable environment is important to ensure optimal performance of the instrument.

Power Considerations

The module power supply has wide ranging capability. It accepts any line voltage in the range described in Table 2 on page 25. Consequently there is no voltage selector in the rear of the module. There are also no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

WARNING Hazard of electrical shock or damage of your instrumentation

can result, if the devices are connected to a line voltage higher than specified.

→ Connect your instrument to the specified line voltage only.

WARNING The module is partially energized when switched off, as long as the power cord is plugged in.

Repair work at the module can lead to personal injuries, e.g. electrical shock, when the cover is opened and the module is connected to power.

- Always unplug the power cable before opening the cover.
- → Do not connect the power cable to the instrument while the covers are removed.

CAUTION

Inaccessible power plug.

In case of emergency it must be possible to disconnect the instrument from the power line at any time.

- Make sure the power connector of the instrument can be easily reached and unplugged.
- Provide sufficient space behind the power socket of the instrument to unplug the cable.

Power Cords

Different power cords are offered as options with the module. The female end of all power cords is identical. It plugs into the power-input socket at the rear. The male end of each power cord is different and designed to match the wall socket of a particular country or region.

WARNING

Absence of ground connection or use of unspecified power cord

The absence of ground connection or the use of unspecified power cord can lead to electric shock or short circuit.

- Never operate your instrumentation from a power outlet that has no ground connection.
- Never use a power cord other than the Agilent Technologies power cord designed for your region.

WARNING

Use of unsupplied cables

Using cables not supplied by Agilent Technologies can lead to damage of the electronic components or personal injury.

→ Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

WARNING

Unintended use of supplied power cords

Using power cords for unintended purposes can lead to personal injury or damage of electronic equipment.

Never use the power cords that Agilent Technologies supplies with this instrument for any other equipment.

Bench Space

The module dimensions and weight (see Table 2 on page 25) allow you to place the module on almost any desk or laboratory bench. It needs an additional 2.5 cm (1.0 inches) of space on either side and approximately 8 cm (3.1 inches) in the rear for air circulation and electric connections.

If the bench shall carry a complete HPLC system, make sure that the bench is designed to bear the weight of all modules.

The module should be operated in a horizontal position.

Condensation

CAUTION

Condensation within the module

Condensation will damage the system electronics.

- → Do not store, ship or use your module under conditions where temperature fluctuations could cause condensation within the module.
- → If your module was shipped in cold weather, leave it in its box and allow it to warm slowly to room temperature to avoid condensation.

Physical Specifications

Туре	Specification	Comments
Weight	11.2 kg (22 lbs)	
Dimensions (height × width × depth)	140 x 345 x 435 mm (5.5 x 13.5 x 17 inches)	
Line voltage	100 - 240 VAC, ± 10 %	Wide-ranging capability
Line frequency	50 or 60 Hz, ± 5 %	
Power consumption	320 VA / 150W / 512 BTU	Maximum
Ambient operating temperature	0-55 °C (32-131 °F)	
Ambient non-operating temperature	-40 – 70 °C (-40 – 158 °F)	
Humidity	< 95 % r.h. at 40 °C (104 °F)	Non-condensing
Operating altitude	Up to 2000 m (6562 ft)	
Non-operating altitude	Up to 4600 m (15091 ft)	For storing the module
Safety standards: IEC, CSA, UL	Installation category II, Pollution degree 2	For indoor use only.

Table 2 Physical Specifications

Performance Specifications

Туре	Specification	Comments
Temperature range	10 degrees below ambient to 80 °C	
	up to 80 °C: flow rates up to 5 mL/min	
Temperature stability	± 0.15 °C	
Temperature accuracy	± 0.8 °C ± 0.5 °C	With calibration
Column capacity	Three 30 cm	
Warm-up/cool-down time	5 minutes from ambient to 40 °C 10 minutes from 40 – 20 °C	
Dead volume	3 μL left heat exchanger 6 μL right heat exchanger	
Communications	Controller-area network (CAN), RS-232C, APG Remote: ready, start, stop and shut-down signals, LAN via other 1260 Infinity module	
Safety and maintenance	Extensive diagnostics, error detection and display (through Instant Pilot and Agilent data system), leak detection, safe leak handling, leak output signal for shutdown of pumping system. Low voltages in major maintenance areas.	
GLP features	Column-identification module for GLP documentation of column type.	
Housing	All materials recyclable	

Table 3 Performance Specifications Thermostatted Column Compartment

NOTE

All specifications are valid for distilled water at ambient temperature (25 °C), set point at 40 °C and a flow range from 0.2 –5 mL/min.

Installing the Column Compartment

Unpacking the Column Compartment 28 Delivery Checklist 28 Optimizing the Stack Configuration 29 **One Stack Configuration** 29 Two Stack Configuration 32 Installation Information on Leak and Waste Handling 34 Installing the Column Compartment 38 Flow Connections of the Column Compartment 41 Placing Columns 45 Column-Identification Tag 45 Column Clip 46

This chapter describes the installation of the thermostatted column compartment.

3 Installing the Column Compartment Unpacking the Column Compartment

Unpacking the Column Compartment

If the delivery packaging shows signs of external damage, please call your Agilent Technologies sales and service office immediately. Inform your service representative that the instrument may have been damaged during shipment.

CAUTION

"Defective on arrival" problems

If there are signs of damage, please do not attempt to install the module. Inspection by Agilent is required to evaluate if the instrument is in good condition or damaged.

- → Notify your Agilent sales and service office about the damage.
- An Agilent service representative will inspect the instrument at your site and initiate appropriate actions.

Delivery Checklist

Ensure all parts and materials have been delivered with the module. The delivery checklist is shown below. Please report missing or damaged parts to your local Agilent Technologies sales and service office.

Description	Quantity
Thermostatted column compartment	1
Power cable	1
CAN cable	1
Column switching valve	optional
User Manual (on User Documentation DVD)	1
Accessory kit (see "Accessory Kit" on page 107)	1

 Table 4
 Column Compartment Delivery Checklist

Optimizing the Stack Configuration

One Stack Configuration

Ensure optimum performance by installing the modules of the Agilent 1260 Infinity LC in the following configuration (see Figure 8 on page 30 and Figure 9 on page 31). This configuration optimizes the flow path for minimum delay volume and minimizes the bench space required.

3 Installing the Column Compartment

Optimizing the Stack Configuration

Figure 8 Recommended Stack Configuration (Front View)

Recommended Stack Configuration (Rear View)

Optimizing the Stack Configuration

Two Stack Configuration

To avoid excessive height of the stack when the autosampler thermostat is added to the system it is recommended to form two stacks. Some users prefer the lower height of this arrangement even without the autosampler thermostat. A slightly longer capillary is required between the pump and autosampler. See Figure 10 on page 32 and Figure 11 on page 33.

Pump

Figure 10 Two stack configuration (front view)

AC Power

Installation Information on Leak and Waste Handling

Installation Information on Leak and Waste Handling

The Agilent 1200 Infinity Series has been designed for safe leak and waste handling. It is important that all security concepts are understood and instructions are carefully followed.

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- Never exceed the maximal permissible volume of solvents (6 L) in the solvent cabinet.
- → Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.
- → Arrange the bottles as specified in the usage guideline for the solvent cabinet.
- → A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet.

NOTE

Recommendations for Solvent Cabinet

For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.

Installing the Column Compartment 3

Installation Information on Leak and Waste Handling

Figure 12 Leak and waste handling (overview - typical stack configuration as an example)

1	Solvent cabinet
2	Leak pan
3	Leak pan's outlet port (A), leak funnel (B) and corrugated waste tube (C)
4	Waste tube of the sampler's needle wash
5	Condense drain outlet of the autosampler cooler
6	Waste tube of the purge valve
7	Waste tube

3 Installing the Column Compartment

Installation Information on Leak and Waste Handling

- **1** Stack the modules according to the adequate stack configuration.
 - The leak pan outlet of the upper module must be vertically positioned above the leak tray of the lower module, see Figure 12 on page 35.
- **2** Connect data and power cables to the modules, see section *Installing the Module* below.
- **3** Connect capillaries and tubes to the modules, see section *Flow Connections to the module* below or the relevant system manual.

WARNING Toxic, flammable and hazardous solvents, samples and reagents

- → Keep solvent path free from blockages.
- → Keep the flow path closed (in case the pump in the system is equipped with a passive inlet valve, solvent may leak out due to hydrostatic pressure, even if your instrument is off).
- → Avoid loops.
- → Tubes must not sag.
- Do not bend tubes.
- → Do not immerse tube end in waste liquid.
- → Do not intubate tubes in other tubes.
- → For correct tubing follow instructions on label attached to the module.
Installation Information on Leak and Waste Handling

Figure 13 Warning label (illustration for correct waste tubing)

3 Installing the Column Compartment Installing the Column Compartment

Installing the Column Compartment

Parts required	# Description
	1 Column compartment
	1 Power cord
	1 For other cables see text below
Preparations	Locate bench space.
	Provide power connections.
	Unpack the Column compartment.
WARNING	Module is partially energized when switched off, as long as the power cord is plugged in.
	Risk of stroke and other personal injury. Repair work at the module can lead to personal injuries, e. g. shock hazard, when the module cover is opened and the instrument is connected to power.
	Never perform any adjustment, maintenance or repair of the module with the top cover removed and with the power cord plugged in.
	The security lever at the power input socket prevents that the module cover is taken off when line power is still connected. Never plug the power line back in when cover

1 Place the column compartment in the stack or on the bench in a horizontal position.

2 Ensure the power switch at the front of the column compartment is OFF.

Figure 14 Front View of the Thermostatted Column Compartment

- **3** Connect the power cable to the power connector at the rear of the column compartment.
- 4 Connect the CAN cable to other Agilent 1260 Infinity modules.
- **5** If Agilent ChemStation is the controller, connect the LAN connection to the LAN interface board in the detector.

NOTE

If an Agilent DAD/MWD/FLD is in the system, the LAN should be connected to the DAD/MWD/FLD (due to higher data load).

6 Connect the APG Remote cable (optional) for non-Agilent 1260 Infinity modules.

Installing the Column Compartment

7 Turn ON power by pushing the button at the lower left side of the column compartment. The status LED should be green.

Figure 15 Rear View of the Thermostatted Column Compartment

The column compartment is turned on when the line power switch is pressed and the green indicator lamp is illuminated. The column compartment is turned off when the line power switch is protruding and the green light is OFF.

Flow Connections of the Column Compartment

Parts required	# Description
	1 Other modules
	1 Parts from Accessory Kit
	1 Two wrenches 1/4 – 5/16 inch for capillary connections
Preparations	Install the column compartment
WARNING	Toxic, flammable and hazardous solvents, samples and reagents
The handling of solvents, samples and reagents can hold health and safety	
	When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
	The volume of substances should be reduced to the minimum required for the analysis.
	→ Do not operate the instrument in an explosive atmosphere.

Flow Connections of the Column Compartment

Flow Connections of the Column Compartment

Flow Connections of the Column Compartment

The installation of the column compartment has now been completed.

NOTE

Always operate the TCC with the front cover in place for proper thermostatting conditions and to protect the column area against strong drafts from the ouside.

Placing Columns

Column-Identification Tag

When correctly placed on the heat exchanger, the distance between the column identification tag and the tag reader is 1 - 2 mm. This is the optimum distance for proper function. The identification tag can be easily removed from the column.

NOTE

For columns with small diameter, a cable tie wrap should be used to fix the column identification tag to the column. Assure that the tie wrap does not block the front cover.

NOTE The tag needs to be placed differently, depending on whether the column is installed at the left or right heat exchanger, see Figure 16 on page 45 and Figure 17 on page 45. The Agilent logo should always be at front.

Figure 16 Column-Identification Tag for Left Heat Exchanger

Figure 17 Column-Identification Tag for Right Heat Exchanger

3 Installing the Column Compartment Placing Columns

Column Clip

For better positioning of the column on the heat exchanger a column clip is available (see "Accessory Kit" on page 107).

Figure 18 Column clip

This chapter explains the operational parameters of the module.

4 Using the Module Leak and Waste Handling

Leak and Waste Handling

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- → Do not operate the instrument in an explosive atmosphere.
- → Never exceed the maximal permissible volume of solvents (6 L) in the solvent cabinet.
- → Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.
- → Arrange the bottles as specified in the usage guideline for the solvent cabinet.
- → A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet.
- The residual free volume in the appropriate waste container must be large enough to collect the waste liquid.
- → Check the filling level of the waste container regularly.
- → To achieve maximal safety, check the correct installation regularly.

NOTE

Recommendations for Solvent Cabinet

For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.

For details on correct installation, see "Installation Information on Leak and Waste Handling" on page 34.

Solvent Information

Observe the following recommendations on the use of solvents.

- Follow recommendations for avoiding the growth of algae, see pump manuals.
- Small particles can permanently block capillaries and valves. Therefore, always filter solvents through 0.4 μm filters.
- Avoid or minimize the use of solvents that may corrode parts in the flow path. Consider specifications for the pH range given for different materials like flow cells, valve materials etc. and recommendations in subsequent sections.

Agilent 1260 Infinity TCC User Manual

5 How to optimize the Column Compartment

Optimizing the Performance of your Column Compartment 52

This chapter provides information on how to optimize the thermostatted column compartement.

Optimizing the Performance of your Column Compartment

For best performance results of the column compartment:

- Use short connection capillaries and place them close to the heat exchanger. This will reduce heat dissipation and external band-broadening.
- Use the left heat exchanger for small volume columns, for example, 2 3 mm i.d. columns at flow rates of less than 200 $\mu L/min.$
- For even lower band-broadening, the heat exchanger can be by-passed and the column is placed well between the heat exchanger fins.
- Keep the left and right heat exchanger temperature the same unless you do specific applications.
- Assure that the front cover is always closed.

6

Troubleshooting and Diagnostics

Overview of the Module's Indicators and Test Functions 54 Status Indicators 56 Power Supply Indicator 56 Module Status Indicator 57 Available Tests depending on User Interfaces 58 Agilent Lab Advisor Software 59

Overview about the troubleshooting and diagnostic features.

Overview of the Module's Indicators and Test Functions

Status Indicators

6

The module is provided with two status indicators which indicate the operational state (prerun, run, and error states) of the module. The status indicators provide a quick visual check of the operation of the module.

Error Messages

In the event of an electronic, mechanical or hydraulic failure, the module generates an error message in the user interface. For each message, a short description of the failure, a list of probable causes of the problem, and a list of suggested actions to fix the problem are provided (see chapter Error Information).

Test Functions

A series of test functions are available for troubleshooting and operational verification after exchanging internal components (see Tests and Calibrations).

Thermostat Diagnostic Test

The **Thermostat Diagnostic Test** evaluates the heating and cooling efficiency of the two peltier elements.

Temperature Calibration and Verification

The temperature calibration and verification procedure enables the instrument temperature to be measured against an external, calibrated measuring device. Normally, temperature calibration is not required throughout the lifetime of the instrument. However, in order to comply with local regulatory requirements, calibration and verification may be required.

The following sections describe these functions in detail.

6 Troubleshooting and Diagnostics Status Indicators

Status Indicators

Two status indicators are located on the front of the module. The lower left indicates the power supply status, the upper right indicates the module status.

Figure 19 Location of Status indicators

Power Supply Indicator

The power supply indicator is integrated into the main power switch. When the indicator is illuminated (*green*) the power is *ON*.

Module Status Indicator

The module status indicator indicates one of six possible module conditions:

- When the status indicator is *OFF* (and power switch light is on), the module is in a *prerun* condition, and is ready to begin an analysis.
- A *green* status indicator, indicates the module is performing an analysis (*run* mode).
- A *yellow* indicator indicates a *not-ready* condition. The module is in a not-ready state when it is waiting for a specific condition to be reached or completed (for example, immediately after changing a set point), or while a self-test procedure is running.
- An *error* condition is indicated when the status indicator is *red*. An error condition indicates the module has detected an internal problem which affects correct operation of the module. Usually, an error condition requires attention (e.g. leak, defective internal components). An error condition always interrupts the analysis.

If the error occurs during analysis, it is propagated within the LC system, i.e. a red LED may indicate a problem of a different module. Use the status display of your user interface for finding the root cause/module of the error.

- A *blinking* indicator indicates that the module is in resident mode (e.g. during update of main firmware).
- A *fast blinking* indicator indicates that the module is in a low-level error mode. In such a case try to re-boot the module or try a cold-start (see "Special Settings" on page 141. Then try a firmware update (see "Replacing the Module's Firmware" on page 103). If this does not help, a main board replacement is required.

6 Troubleshooting and Diagnostics

Available Tests depending on User Interfaces

Available Tests depending on User Interfaces

NOTE

Depending on the used interface, the available tests and the screens/reports may vary. Preferred tool should be the Agilent Lab Advisor Software, see "Agilent Lab Advisor Software" on page 59.

Table 5 Test Functions available vs. User Interface - TCC

Test	Lab Advisor Software	Agilent ChemStation	Instant Pilot G4208A
Thermostat Function Test	Yes	Yes	No
Temperature Calibration	Yes	Yes	Yes ¹

¹ section Maintenance

Agilent Lab Advisor Software

The Agilent Lab Advisor software is a standalone product that can be used with or without data system. Agilent Lab Advisor software helps to manage the lab for high quality chromatographic results and can monitor in real time a single Agilent LC or all the Agilent GCs and LCs configured on the lab intranet.

Agilent Lab Advisor software provides diagnostic capabilities for all Agilent 1200 Infinity Series modules. This includes diagnostic capabilities, calibration procedures and maintenance routines for all the maintenance routines.

The Agilent Lab Advisor software also allows users to monitor the status of their LC instruments. The Early Maintenance Feedback (EMF) feature helps to carry out preventive maintenance. In addition, users can generate a status report for each individual LC instrument. The tests and diagnostic features as provided by the Agilent Lab Advisor software may differ from the descriptions in this manual. For details refer to the Agilent Lab Advisor software help files.

The Instrument Utilities is a basic version of the Lab Advisor with limited functionality required for installation, use and maintenance. No advanced repair, troubleshooting and monitoring functionality is included.

6 Troubleshooting and Diagnostics

Agilent Lab Advisor Software

Error Information

7

What Are Error Messages 62 General Error Messages 63 Timeout 63 Shutdown 63 Remote Timeout 64 Lost CAN Partner 65 Leak 66 Leak Sensor Open 67 Leak Sensor Short 67 **Compensation Sensor Open** 68 **Compensation Sensor Short** 68 TCC Error Messages 69 Left Fan Failed 69 Right Fan Failed 70 Open Cover 70 Cover Violation 71 Left Temperature Timeout 71 Right Temperature Timeout 72 Defective Temperature Sensor 72 Heater Profile 73 Valve Failed 74 Column Temperature 75 Heatsink Temperature 75 Defective Heater Circuit 76

This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

What Are Error Messages

Error messages are displayed in the user interface when an electronic, mechanical, or hydraulic (flow path) failure occurs which requires attention before the analysis can be continued (for example, repair, or exchange of consumables is necessary). In the event of such a failure, the red status indicator at the front of the module is switched on, and an entry is written into the module logbook.

If an error occurs outside a method run, other modules will not be informed about this error. If it occurs within a method run, all connected modules will get a notification, all LEDs get red and the run will be stopped. Depending on the module type, this stop is implemented differently. For example, for a pump the flow will be stopped for safety reasons. For a detector, the lamp will stay on in order to avoid equilibration time. Depending on the error type, the next run can only be started, if the error has been resolved, for example liquid from a leak has been dried. Errors for presumably single time events can be recovered by switching on the system in the user interface.

Special handling is done in case of a leak. As a leak is a potential safety issue and may have occurred at a different module from where it has been observed, a leak always causes a shutdown of all modules, even outside a method run.

In all cases, error propagation is done via the CAN bus or via an APG remote cable (see documentation for the APG interface).

General Error Messages

General error messages are generic to all Agilent 1200 Infinity Series HPLC modules.

General error messages are generic to all Agilent series HPLC modules and may show up on other modules as well.

Timeout

Error ID: 0062

The timeout threshold was exceeded.

Probable cause	Suggested actions
1 The analysis was completed successfully, and the timeout function switched off the module as requested.	Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.
2 A not-ready condition was present during a sequence or multiple-injection run for a period longer than the timeout threshold.	Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.

Shutdown

Error ID: 0063

An external instrument has generated a shutdown signal on the remote line.

The module continually monitors the remote input connectors for status signals. A LOW signal input on pin 4 of the remote connector generates the error message.

Pr	obable cause	Suggested actions
1	Leak detected in another module with a CAN connection to the system.	Fix the leak in the external instrument before restarting the module.
2	Leak detected in an external instrument with a remote connection to the system.	Fix the leak in the external instrument before restarting the module.
3	Shut-down in an external instrument with a remote connection to the system.	Check external instruments for a shut-down condition.
4	The degasser failed to generate sufficient vacuum for solvent degassing.	Check the vacuum degasser for an error condition. Refer to the <i>Service Manual</i> for the degasser or the 1260 pump that has the degasser built-in.

Remote Timeout

Error ID: 0070

A not-ready condition is still present on the remote input. When an analysis is started, the system expects all not-ready conditions (for example, a not-ready condition during detector balance) to switch to run conditions within one minute of starting the analysis. If a not-ready condition is still present on the remote line after one minute the error message is generated.

Probable cause		Suggested actions
1	Not-ready condition in one of the instruments connected to the remote line.	Ensure the instrument showing the not-ready condition is installed correctly, and is set up correctly for analysis.
2	Defective remote cable.	Exchange the remote cable.
3	Defective components in the instrument showing the not-ready condition.	Check the instrument for defects (refer to the instrument's documentation).

Lost CAN Partner

Error ID: 0071

Probable cause

During an analysis, the internal synchronization or communication between one or more of the modules in the system has failed.

The system processors continually monitor the system configuration. If one or more of the modules is no longer recognized as being connected to the system, the error message is generated.

Suggested actions

		buggesteu dettons
1	CAN cable disconnected.	Ensure all the CAN cables are connected correctly.
		Ensure all CAN cables are installed correctly.
2	Defective CAN cable.	Exchange the CAN cable.
3	Defective main board in another module.	Switch off the system. Restart the system, and determine which module or modules are not recognized by the system.

General Error Messages

Leak

Error ID: 0064

A leak was detected in the module.

The signals from the two temperature sensors (leak sensor and board-mounted temperature-compensation sensor) are used by the leak algorithm to determine whether a leak is present. When a leak occurs, the leak sensor is cooled by the solvent. This changes the resistance of the leak sensor which is sensed by the leak-sensor circuit on the main board.

Probable cause		Suggested actions
1	Condensation.	Use a higher temperature setpoint.
2	Loose column fittings.	Ensure all fittings are tight.
3	Broken capillary.	Exchange defective capillaries.
4	Leaking column-switching valve seal.	Exchange the valve seal.

Leak Sensor Open

Error ID: 0083

The leak sensor in the module has failed (open circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak-sensor current to change within defined limits. If the current falls outside the lower limit, the error message is generated.

Pr	obable cause	Suggested actions
1	Leak sensor not connected to the main board.	Please contact your Agilent service representative.
2	Defective leak sensor.	Please contact your Agilent service representative.
3	Leak sensor incorrectly routed, being pinched by a metal component.	Please contact your Agilent service representative.

Leak Sensor Short

Error ID: 0082

The leak sensor in the module has failed (short circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak sensor current to change within defined limits. If the current increases above the upper limit, the error message is generated.

Probable cause		Suggested actions
1	Defective leak sensor.	Please contact your Agilent service representative.
2	Leak sensor incorrectly routed, being pinched by a metal component.	Please contact your Agilent service representative.

Compensation Sensor Open

Error ID: 0081

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor increases above the upper limit, the error message is generated.

Probable cause

Suggested actions

1 Defective main board.

Please contact your Agilent service representative.

Compensation Sensor Short

Error ID: 0080

The ambient-compensation sensor (NTC) on the main board in the module has failed (short circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor falls below the lower limit, the error message is generated.

Probable cause

Suggested actions

1 Defective main board.

Please contact your Agilent service representative.

TCC Error Messages

The following errors are TCC specific error messages.

Left Fan Failed

Error ID: 2829

The left cooling fan in the column compartment has failed.

The hall sensor on the fan shaft is used by the TCC board to monitor the fan speed. If the fan speed falls below 2 revolutions/second for longer than 5 s, the error message is generated.

Probable cause		Suggested actions
1	Fan cable disconnected.	Please contact your Agilent service representative.
2	Defective fan.	Please contact your Agilent service representative.
3	Defective TCC board.	Please contact your Agilent service representative.

Right Fan Failed

Error ID: 2830

The right cooling fan in the column compartment has failed.

The hall sensor on the fan shaft is used by the TCC board to monitor the fan speed. If the fan speed falls below 2 revolutions/second for longer than 5 s, the error message is generated.

Probable cause		Suggested actions
1	Fan cable disconnected.	Please contact your Agilent service representative.
2	Defective fan.	Please contact your Agilent service representative.
3	Defective TCC board.	Please contact your Agilent service representative.

Open Cover

Error ID:

The top foam has been removed.

The sensor on the TCC board detects when the top foam is in place. If the foam is removed, the fans and peltier elements are switched OFF, and the error message is generated.

Probable cause		Suggested actions	
1	The top foam was removed during operation.	Please contact your Agilent service representative.	
2	Foam not activating the sensor.	Please contact your Agilent service representative.	

Cover Violation

Error ID: 2833

The column compartment was switched on with the top cover and foam open.

The sensor on the CCM board detects if the top foam is in place. If the column compartment is switched on with the foam removed, the processor switches OFF the peltier elements after a short delay, and the error message is generated.

Probable cause

Suggested actions

1 The column compartment was switched on with the top cover and foam removed. Please contact your Agilent service representative.

Left Temperature Timeout

Error ID: 2811

The temperature of the left heat exchanger did not reach the temperature setpoint within the timeout threshold.

Probable cause		Suggested actions
1	Defective left heater assembly.	Please contact your Agilent service representative.
2	Defective TCC board.	Please contact your Agilent service representative.

Right Temperature Timeout

Error ID: 2812

The temperature of the right heat exchanger did not reach the temperature setpoint within the timeout threshold.

Probable cause		Suggested actions
1	Defective right heater assembly.	Please contact your Agilent service representative.
2	Defective TCC board.	Please contact your Agilent service representative.

Defective Temperature Sensor

Error ID: 2821

One of the temperature sensors has failed.

The TCC board monitors the signal from the sensor continually. If the signal is missing or out of range, the error message is generated.

Defective Temperature Sensor 0: left column.

Defective Temperature Sensor 1: left heat sink.

Defective Temperature Sensor 2: right column.

Defective Temperature Sensor 3: right heat sink.

Defective Temperature Sensor 4: ambient-correction sensor (located on left flex board).

Probable cause		Suggested actions	
1	Flex board not connected (only if all left or right sensor error messages appear simultaneously).	Please contact your Agilent service representative.	
2	Defective heater assembly.	Please contact your Agilent service representative.	
3	Defective TCC board.	Please contact your Agilent service representative.	
Heater Profile

Error ID:

Heater Profile 0: left heater.

Heater Profile 2: right heater.

The temperature warm-up (or cooling) profile of the heater is incorrect.

When the temperature setpoint is changed, the heater begins heating (or cooling) the column heat exchanger. During this time, the processor monitors the temperature change, and checks if the temperature profile is changing in the correct direction. If the temperature is not changing as expected, the error message is generated.

Probable cause		Suggested actions
1	Defective heater assembly.	Please contact your Agilent service representative.
2	Defective TCC board.	Please contact your Agilent service representative.

Valve Failed

Error ID: 2825, 2826, 2827

Valve Failed 0: failed to switch to the position where ports 1 and 2 are connected.

Valve Failed 1: failed to switch to the position where ports 1 and 6 are connected.

The column-switching valve failed to switch.

The switching of the column-switching valve is monitored by two micro switches on the valve assembly. The switches detect the successful completion of the valve movement within a predefined time window. If the valve fails to reach the end point, or fails to reach the end point within the time window, the error message is generated.

Probable cause	Suggested actions
1 Defective column-switching valve.	Please contact your Agilent service representative.
2 Defective TCC board.	Please contact your Agilent service representative.

Column Temperature

Error ID: 2836

The temperature of the column heat exchanger has exceeded the maximum limit.

Column Temperature 0: left heater.

Column Temperature 2: right heater.

For safety reasons, the maximum column heat-exchanger temperature is 105 °C. If an electronic failure occurs which causes the heater to heat continually, the current is switched off when the temperature exceeds 105 °C, and the error message is generated.

Probable cause	Suggested actions
1 Defective heater assembly.	Please contact your Agilent service representative.
2 Defective TCC board.	Please contact your Agilent service representative.

Heatsink Temperature

Error ID: 2837

The temperature of the Peltier heatsink has exceeded the maximum limit.

Heatsink Temperature 0: left heater.

Heatsink Temperature 2: right heater

The maximum temperature of the Peltier heatsink is 70 °C. If an electronic failure occurs which causes the heatsink to reach 70 °C, the current is switched OFF and the error message is generated.

Pr	obable cause	Suggested actions	
1	Defective heater assembly.	Please contact your Agilent service representative.	
2	Defective TCC board.	Please contact your Agilent service representative.	

Defective Heater Circuit

Error ID: 2860

The electronic circuit for control of the heater assemblies is defective.

The processor checks the function of the heater circuits continually. If a defect is detected in the control circuit, the processor switches OFF the heater (peltier) assemblies, and the error message is generated.

Probable cause Suggested actions 1 Defective TCC board. Please contact your Agilent service representative.

8

Thermostat Function Test78Evaluating the Thermostat Function Test80Pressure Test81Column Thermostat Temperature Calibration82Temperature Calibration Procedure83Temperature Calibration with Agilent Lab Advisor83Column Thermostat Calibration Problems89Installing the Temperature Sensor90

This chapter describes the TCC's built in test functions.

Thermostat Function Test

Thermostat Function Test Description

The **Thermostat Function Test** is used to evaluate the cooling and heating performance of the two peltier elements.

When the test is started, both heat exchangers are cooled initially to 25 °C. This temperature is held for 12 seconds, and then the setpoint is changed to 20 °C. The time required to reach 20 °C is a measure of the cooling efficiency of the peltier elements. At 3.5 minutes, the setpoint is changed to 30 °C, and both elements begin heating. The time required to reach 30 °C is a measure of heating efficiency.

Thermostat Function Test Result

A typical Thermostat Function Test profile is shown in Figure 20 on page 78.

Thermostat Test with Agilent LabAdvisor

- Test Name Thermostat Test Description Evaluates the cooling and heating performance of the two peltier elements. Module G1316A:DE14923865 Status Passed 5/31/2010 1:21:13 PM Start Time 5/31/2010 1:28:34 PM Stop Time Test Procedure -Result Name Value V 1. Waiting until thermostat reaches starting temperature Cool rate of right heat exchanger 2.7 °C/min V 2. Performing thermostat functional test Heat rate of right heat exchanger 8.6 °C/min Cool rate of left heat exchanger 2.5 °C/min 3. Evaluating thermostat functional test V Heat rate of left heat exchanger 8.7 °C/min Temperatures N LeftTemperature RightTemperature Temperature [°C] 32 30 25 20 -18 -2 3 1 5 4 ó 5.9833 Time [min]
- 1 1. Select the Thermostat Test and start the test.

Figure 21 Thermostat Test

Evaluating the Thermostat Function Test

During the cooling phase, the Peltier elements should cool at a rate of >2 °C/minute. During the heating phase, the temperature change should be >3 °C/minute. Defective thermostat components may cause cooling or heating rates to fall outside these limits.

Thermostat Function Test Failed

Pr	obable cause	Suggested actions
1	Column compartment cover not installed correctly (bad insulation).	Ensure cover is installed correctly.
2	Air intake blocked (insufficient air flow for cooling).	Ensure sufficient space is available for air circulation see "Bench Space" on page 24.
3	Poor peltier efficiency (if setpoint temperatures can still be reached, and are stable, there is no requirement to exchange the heater assembly).	Exchange the heater assembly.
4	Defective sensors on flex board.	Exchange the heater assembly.
5	Defective heater assembly.	Exchange the heater assembly.

Pressure Test

For running a **Pressure Test**, please refer to the corresponding pump manual. The **Pressure Test** may be used for testing the tightness of a valve installed in the TCC or Flex Cube.

CAUTION

Wrong use of **Pressure Test** may damage valve.

The current implementation of the **Pressure Test** automatically uses the maximum pressure generated by the pump used in the system.

→ Do not use the test for modules having a lower maximum pressure than the pump as this will damage the valve. For example do not use 400 bar valve in a TCC or Flex Cube in combination with a 600 bar pump. Test Functions Column Thermostat Temperature Calibration

8

Column Thermostat Temperature Calibration

Temperature Calibration Principle

The actual temperatures of the column heat exchangers (left and right) depend on the column setpoint temperature. For setpoint temperatures above 36 °C, the heat exchangers are heated to a temperature slightly above the setpoint temperature. Conversely, for setpoint temperatures below 36 °C, the heat exchangers are kept at a temperature slightly below the setpoint temperature. This fine temperature correction compensates for the small amount of heat exchange through the instrument housing, and ensures the column is always kept at the setpoint temperature.

At 36 °C, the column setpoint and heat-exchanger temperatures are equal (temperature cross-over point). This is the temperature at which a calibrated measuring device can be used to calibrate the column thermostat.

Figure 22 1-Point Calibration at the Temperature Cross-Over Point

The column thermostat is calibrated correctly when the measured temperature (using the external measuring device, "Temperature Calibration Procedure" on page 83) and the cross-over temperature (36 °C) of both heat exchangers (left and right) are within a range of ± 0.5 °C.

Test Functions Column Thermostat Temperature Calibration

8

Temperature Calibration Procedure

Tools required	Description Temperature measuring device		
	(see note below)		
Parts required	# Description		
	1 Calibrated temperature measuring device		
NOTE	For the measuring and calibration process Agilent Technologies recommends a thermometer with 0.1 °C precision. Contact the local Agilent Technologies support representative for ordering information.		
NOTE	The figures in this procedure refer to a specific type of temperature sensor (Heraeus Quat340, quartz surface-temperature measurement sensor). Other sensors may require a different fixing.		
	1 Install the temperature sensor see "Installing the Temperature		

1 Install the temperature sensor, see "Installing the Temperature Sensor" on page 90.

Temperature Calibration with Agilent Lab Advisor

One Point Temperature Calibration with Agilent Lab Advisor

This is the standard 1-point calibration. If a 2-point calibration is required, refer to "Two Point Temperature Calibration with Agilent Lab Advisor" on page 86

If only one sensor is available, the procedure has to be performed for both, the left and right heat exchanger separately.

Column Thermostat Temperature Calibration

Мо	dule prox. Time	Temperature Calibration G13164:DE14923865 5 min Running	Descripti	the ca is i Ho	the temperature calibration and verifice e instrument temperature to be measu ilbrated measuring device. Normally, not required throughout the lifetime of swever, in order to comply with local r libration and verification may be requi	red against an external, temperature calibration the instrument. egulatory requirements,
Test	t Procedure			Result		
		10 I			Name	Value
цф	1. Prepare ca	alibration		Left heat e	xchanger actual temperature	25.66 °C
	2. Start calib	ration mode and wait until 36 °C have been reac	hed	Right heat	exchanger actual temperature	24.72 °C
	K Temperatur	re Calibration This will perform a calibration of the left and therefore heating to 36 °C and ask for corretemperature values			X	

1 Select the Temperature Calibration and start the calibration.

Figure 23 Temperature Calibration - Step 1 (Start)

2 Wait for the temperature to stabilize at the calibration temperature (36 °C).

Mo Ap	Test Name Temperature Calibration Module G1316A:DE14923865 Approx. Time 5 min Status Running		DE14923865	tł c. is H		The temperature calibration and verification procedure enable the instrument temperature to be measured against an extern calibrated measuing device. Normally, temperature calibrator is not required throughout the lifetime of the instrument. However, in order to comply with local regulatory requirements calibration and verification may be required.		
Tes	t Proc	edure —				Result		
		_					Name	Value
1	1.	Prepare (calibration			Left he	at exchanger actual temperature	35.52 °C
V	2.	Start cali	bration mo	de and wait until 36 °C have been rea	iched	Right h	eat exchanger actual temperature	35.79 °C
ai)	З.	Enter cal	ibration val	ues				
	4.	Review a	and save c	alibration				
		Tem	perature	Calibration			×	
			×		°C °C	nperatures: Cancel	_	

Figure 24 Temperature Calibration - Step 2 (Wait for stabilization)

8

Test Name Temperature Calibration Description The temperature calibration and verification procedure enables the instrument temperature to be measured against an external G1316A:DE14923865 Module calibrated measuring device. Normally, temperature calibration is not required throughout the lifetime of the instrument. However, in order to comply with local regulatory requirements, Approx. Time 5 min calibration and verification may be required. Status **Bunning** Test Procedure -Result Value Name V 1. Prepare calibration Left heat exchanger actual temperature 36.00 °C 2 Start calibration mode and wait until 36 °C have been reached Right heat exchanger actual temperature 36.00 °C Left heat exchanger calibration value 36 °C Enter calibration values Right heat exchanger calibration value 36 °C шÒ 4. Review and save calibration k Temperature Calibration × Do you want the calibration values to be stored in the module? ۸ ([Yes] to save the values, [No] to abort the calibration) Yes No

3 Measure the temperature of the heat exchanger.

Figure 25 Temperature Calibration - Step 3 (Save new calibration values)

4 If the measured temperature deviates by more than ± 0.5 °C from the actual temperature, enter the measured value in the measured-temperature field for the left and/or right heat exchanger.

Test Name Temperature Calibration Module G1316A:DE14923865 Status Done Start Time 5/31/2010 11:02:45 AM		Temperature Calibration	Description	The temperature calibration and verification procedure enable			
		G1316A:DE14923865		the instrument temperature to be measured against an external calibrated measuring device. Normally, temperature calibration is not required throughout the lifetime of the instrument. However, in order to comply with local regulatory requirements.			
		Done					
		5/31/2010 11:02:45 AM		calibration and verification may be re-			
Stop	Time	5/31/2010 11:11:58 AM					
Test P	rocodur						
	roceaan	e	Result		1		
		-	Result	Name	Value		
		eepare calibration			Value 36.00 °C		
1	1. Pre	-	Left h	Name			
1	1. Pre 2. Sta	- epare calibration	Left h Right	Name eat exchanger actual temperature	36.00 °C		

Figure 26 OnePoint Calibration - Step 4 (Calibration done)

5 Repeat the calibration procedure for the right heat exchanger.

Column Thermostat Temperature Calibration

NOTE

Limits

After calibration, the measured temperature and the calibration temperature should be within \pm 0.5 °C. The maximum deviation which can be adjusted \pm 1.6 °C. If the measured value and the calibration value differ by more than \pm 1.6 °C, this is an indication that a problem exists, see "Column Thermostat Calibration Problems" on page 89

Two Point Temperature Calibration with Agilent Lab Advisor

In addition to the standard 1-point calibration, the 2-point calibration uses a second temperature point (both temperatures can be entered individually).

With this calibration it is possible to get the measured temperature in the column closer to the set temperature when working at higher temperature, e.g. above 60 degree (if required).

The 2-point temperature calibration will overlay on an existing 1-point calibration. The instrument will not know the 1-point temperature calibration anymore. The information stays in a specific memory area that is not overwritten by firmware updates.

In case the instrument must be converted back to standard 1-point calibration, a special command has to used, see "Turning off the 2-point calibration" on page 88.

The figures below show the calibration process with the Agilent LabAdvisor software. It is similar to the 1-Point Calibration.

Column Thermostat Temperature Calibration

Test Name Temperature Two Point Calibration Module G1316A:DE14923865 Approx. Time 15 min Status Running		Description	ion With this calibration it is possible to get the measured temperature in the column closer to the set temperature when working at higher temperature, e.g. above 60 degree (if required).		
est Procedure —		Re	sult Name	Value	
 Prepare 2. Start ca 	e calibration Ilibration		ft heat exchanger actual temperature ght heat exchanger actual temperatur	27.24 °C e 26.64 °C	
	ture Two Point Calibration This will perform a calibration of the lef by adjusting heat exchangers to two u asking for corresponding measured ten	user-defined temperatu mperature values			

Figure 27 Two Point Calibration – Start

Test Name Temperature Two Point Module G1316A:DE14923865 Approx. Time 15 min Status Running		1	Description	ion With this calibration it is possible to get the measured temperature in the column closer to the set temperature when working at higher temperature, e.g. above 60 degree (if required).			
Test	: Proc	edure —			R	sult Name	Value
V	1.	Prepare	calibrati	on	Le	ft heat exchanger actual temperature	26.89 °C
an)	2.	Start ca	libration			ght heat exchanger actual temperature	26.32 °C
	3. 4. 5.	Tempe	erature	Two Point Calibration Please enter the calibration temperatu	res:	×	
	6. 7.		X	Lower calibration temperature 40.0 Upper calibration temperature 60.0			
				OK	Cancel		

Figure 28 Two Point Calibration – Define the two temperatures

Column Thermostat Temperature Calibration

es	t Na	me	Temperature Two Point Calibration	Description	· vitili tillo calibration it lo possible to get the mea			
Module G1316A			G1316A:DE14923865		temperature in the column closer to the set temperature			
Sta	tus		Passed		e.g. above			
Start Time 5/31/2010 11:51:16 AM Stop Time 5/31/2010 12:30:57 PM		me	5/31/2010 11:51:16 AM	60 degree (if required).				
		5/31/2010 12:30:57 PM						
I								
est	Proc	edure —		Re	esult			
		_			Name	Value		
2	1.	Prepare	e calibration	Le	ft heat exchanger actual temperature	60.01 °C		
1	2.	Start ca	alibration	Bi	ght heat exchanger actual temperature	60.01 °C		
1	3.	Wait u	ntil lower calibration temperature has been reached	Lo	wer calibration temperature	40.00 °C		
,	4.	Enter la	ower calibration value measured	Up	oper calibration temperature	60.00 °C		
					ft heat exchanger lower calibration temper	39.92 °C		
1	5.	Wait u	ntil upper calibration temperature has been reached	Le	ft heat exchanger lower calibration value	40.00 °C		
1	6.	Enter u	upper calibration value measured	Bi	ght heat exchanger lower calibration temp	39.88 °C		
,	7.	Review	v and save calibration	Bi	ght heat exchanger lower calibration value	40.00 °C		
				Le	ft heat exchanger upper calibration tempe	60.00 °C		
				Le	ft heat exchanger upper calibration value	60.00 °C		
				Bi	ght heat exchanger upper calibration temp	60.01 °C		
					ght heat exchanger upper calibration valu	60.00 °C		

Figure 29 Two Point Calibration – Done

Turning off the 2-point calibration

Use the command line in the "Module Service Center" of the Agilent LabAdvisor software.

1 For left heat exchanger use the command **E2PC 0,0** and Execute.

The user interface will reply with **RA 0000 E2PC 0,0** if command was entered correctly.

2 For right heat exchanger use the command **E2PC 1,0** and Execute.

The user interface will reply with **RA 0000 E2PC 1,0** if command was entered correctly.

3 Perform the "Temperature Calibration" on page xx.

8

Column Thermostat Calibration Problems

If the temperature cannot be calibrated, check the following:

- Has the thermostat front cover been closed correctly?
- Is the measuring device functioning correctly, and is calibrated according to the manufacturers instructions?

Hardware Failures

Probable hardware failures that can lead to a failed calibration procedure are:

- Defective or wrongly calibrated measuring device.
- Defective heater assembly.
- Defective ambient-temperature sensor.
- Defective CCM board.

Column Thermostat Temperature Calibration

Installing the Temperature Sensor

Installation of the temperature sensor is required for the temperature calibration and temperature verification procedures.

The figures below refer to a specific type of temperature sensor (Heraeus, Quat340, quartz surface-temperature measurement sensor). Other sensors may require a different fixing.

9

Warnings and Cautions 92 Introduction to Maintenance 94 Overview of Maintenance 95 Cleaning the Module 96 Changing Column Identification Tags 97 Replacing Head Parts of Column Switching Valve 99 Correcting Leaks 102 Replacing the Module's Firmware 103

This chapter describes the maintenance and repair of the TCC.

Warnings and Cautions

WARNING

Personal injury or damage to the product

Agilent is not responsible for any damages caused, in whole or in part, by improper use of the products, unauthorized alterations, adjustments or modifications to the products, failure to comply with procedures in Agilent product user guides, or use of the products in violation of applicable laws, rules or regulations.

Use your Agilent products only in the manner described in the Agilent product user guides.

WARNING

Module is partially energized when switched off, as long as the power cord is plugged in.

Risk of stroke and other personal injury. Repair work at the module can lead to personal injuries, e. g. shock hazard, when the module cover is opened and the instrument is connected to power.

- → Never perform any adjustment, maintenance or repair of the module with the top cover removed and with the power cord plugged in.
- → The security lever at the power input socket prevents that the module cover is taken off when line power is still connected. Never plug the power line back in when cover is removed.

WARNING

Sharp metal edges

Sharp-edged parts of the equipment may cause injuries.

To prevent personal injury, be careful when getting in contact with sharp metal areas.

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- → Do not operate the instrument in an explosive atmosphere.

CAUTION

Electronic boards and components are sensitive to electrostatic discharge (ESD).

- ESD can damage electronic boards and components.
- → Be sure to hold the board by the edges, and do not touch the electrical components. Always use ESD protection (for example, an ESD wrist strap) when handling electronic boards and components.

CAUTION

The column compartment has two heat exchanger assemblies that might be hot.

→ Allow them to cool down before starting repairs.

CAUTION

Safety standards for external equipment

→ If you connect external equipment to the instrument, make sure that you only use accessory units tested and approved according to the safety standards appropriate for the type of external equipment. **Introduction to Maintenance**

Introduction to Maintenance

The main user accessible assemblies of the Agilent 1260 Infinity Thermostatted Column Compartment can be accessed from the front (simple repairs) and don't require to remove the TCC from the system stack.

Overview of Maintenance

The following pages describe maintenance procedures (simple repairs) that can be done without opening the main cover.

Table 6	Simple Repairs
---------	----------------

Procedure	Typical Frequency	Notes
"Cleaning the Module" on page 96	If required	
"Changing Column Identification Tags" on page 97	When column performance or new application requires a change	
"Replacing Head Parts of Column Switching Valve" on page 99	If the valve performance shows indication of leakage or wear	
"Correcting Leaks" on page 102	If a leak has occurred	Check for leaks

Cleaning the Module

To keep the module case clean, use a soft cloth slightly dampened with water, or a solution of water and mild detergent.

WARNING Liquid dripping into the electronic compartment of your module can cause shock hazard and damage the module

- → Do not use an excessively damp cloth during cleaning.
- → Drain all solvent lines before opening any connections in the flow path.

9

Changing Column Identification Tags

The column compartment is equipped with a column-identification system, that stores column specific information. Two identification antennas are incorporated in the heat exchanger assemblies.

Figure 30 Column-Identification System

When If column is used on the opposite heat exchanger or a tag is added to a new column.

Parts required

#	p/n	Description
1	5062-8588	Column identification tag (1x), re-order (3/pk)

- 1 The identification tag can be easily removed from the column.
- 2 The tag needs to be placed differently, depending on whether the column is installed at the left or right heat exchanger, see Figure 31 on page 98 and Figure 32 on page 98. The Agilent logo should always be at front.

When correctly placed on the heat exchanger, the distance between tag and tag reader is 1 - 2 mm. This is the optimum distance for proper function.

Changing Column Identification Tags

Figure 32 Column-Identification Tag for Right Heat Exchanger

3 For columns with small diameter, a cable tie wrap should be used to fix the column identification tag to the column. Assure that the tie wrap does not block the front cover.

Replacing Head Parts of Column Switching Valve

Replacing Head Parts of Column Switching Valve

Replacing Head Parts of Column Switching Valve

1 Remove capillaries from ports.

2 Loosen each fixing stator screw two turns at a time. Remove bolts from head.

- **3** Remove the stator head (and stator face if applicable).
- **4** Remove the stator ring.
- 5 Remove the rotor seal (and isolation seal if damaged or contaminated).
- **6** Install the new isolation seal (if required). Ensure the metal spring inside the ring faces towards the valve body.
- 7 Install the new rotor seal.
- **8** Replace the stator ring. Ensure the stator ring is flush with the valve body.
- **9** Place the new (if required) stator face in place on the stator head. Reinstall the stator head.
- **10** Insert the stator screws in the stator head. Tighten the screws alternately two turns at a time until the stator head is secure.

Replacing Head Parts of Column Switching Valve

11 Reconnect the pump capillaries to the valve ports. Slide the waste tube into the waste holder in the leak tray.

CAUTION

Wrong use of **Pressure Test** may damage valve.

The current implementation of the **Pressure Test** automatically uses the maximum pressure generated by the pump used in the system.

→ Do not use the test for modules having a lower maximum pressure than the pump as this will damage the valve. For example do not use 400 bar valve in a TCC or Flex Cube in combination with a 600 bar pump.

12 Perform a Pressure Test to ensure the valve is pressure tight.

9 Maintenance Correcting Leaks

Correcting Leaks

When	If a leakage has occurred at the heat exchanger or at the capillary connections or at the column switching valve.
Tools required	Description
	Tissue
	Pipette
	Wrench, 1/4 – 5/16 inch
	(for capillary connections)
NOTE	Depending on the column position or the use of additional heat-exchanger assemblies, the view of Figure 34 on page 102 may vary.

- **1** Remove the front cover.
- 2 Use a pipette and tissue to dry the leak sensor area.
- **3** Observe the capillary connections and the column switching valve for leaks and correct, if required.
- 4 Re-install the front cover.

9

Replacing the Module's Firmware

When	 The installation of newer firmware might be necessary if a newer version solves problems of older versions or to keep all systems on the same (validated) revision. 	
	 The installation of older firmware might be necessary to keep all systems on the same (validated) revision or if a new module with newer firmware is added to a system or if third party control software requires a special version. 	
Tools required	Description	
	LAN/RS-232 Firmware Update Tool	
OR	Agilent Lab Advisor software	
OR	Instant Pilot G4208A	
	(only if supported by module)	
Parts required	# Description	
	1 Firmware, tools and documentation from Agilent web site	
Preparations	Read update documentation provided with the Firmware Update Tool.	
	To upgrade/downgrade the module's firmware carry out the following steps:	
	1 Download the required module firmware, the latest LAN/RS-232 FW Update Tool and the documentation from the Agilent web.	
	 http://www.chem.agilent.com/_layouts/agilent/downloadFirmware.aspx? whid=69761 	
	2 For loading the firmware into the module follow the instructions in the documentation.	

Replacing the Module's Firmware

Module Specific Information

	G1316A
Initial firmware (main and resident)	Depends on main board revision. Newer versions (G1316-66530 and higher) allow A.05.05 and above only.
Compatibility with 1100 / 1200 series modules	always
Conversion to / emulation	N/A

Table 7 Module Specific Information (G1316A/B)

Agilent 1260 Infinity TCC User Manual

10 Parts for Maintenance

Column Switching Valve 2 Position/6 Port 106 Kits 107 Accessory Kit 107 Spring Kit 107 Plastic Parts 108 Leak Parts 109

This chapter provides information on parts for maintenance.

10 Parts for Maintenance

Column Switching Valve 2 Position/6 Port

Column Switching Valve 2 Position/6 Port

ltem	p/n	Description
	G1353-68750	Valve Kit 2POS/6PORT 600 bar
	G1316-68708	Capillary Kit Column Switching includes two capillaries (0.17 mm i.d., 180 mm) and three capillaries (0.17 mm i.d., 90 mm)
1	5068-0018	Stator screws
2	0101-1417	Stator head
3	5068-0118	Stator ring
4	0101-1409	Rotor Seal
5	1535-4045	Bearing ring

Figure 35 Column Switching Valve Parts

Kits

Accessory Kit

The Accessory kit (G1316-68755) contains some specific accessories and tools needed for the installation of the TCC.

p/n	Description
5063-6527	Tubing assembly, i.d. 6 mm, o.d. 9 mm, 1.2 m (to waste)
5063-6526 (2x)	Column clamp (for re-order 6/pk)
G1316-87300	Capillary ST 0.17 x 90 mm S/S
5181-1516	CAN cable, Agilent module to module, 0.5 m

Spring Kit

p/n	Description
G1316-68733	Spring kit for G1316A (1100 Series)
G1316-68734	Spring kit for G1316A/B (1200 Series)

10 Parts for Maintenance Plastic Parts

Plastic Parts

ltem	p/n	Description
1	G1316-68714	Front Cover C (NEW)
	G1316-68734	Spring kit for Front Cover (NEW)
2	5043-0207	Name plate 1260

Figure 36 Plastic Parts
Leak Parts

ltem	p/n	Description
1	G1316-67000	Leak tube kit includes following items: Funnel holder G1316C, tubing-flex polyethylene, leak funnel
2	G1316-42303	Capillary guide

10 Parts for Maintenance

Leak Parts

Agilent 1260 Infinity TCC User Manual

11 Identifying Cables

Cable Overview 112 Analog Cables 114 Remote Cables 116 BCD Cables 119 CAN/LAN Cables 121 External Contact Cable 122 Agilent Module to PC 123 Agilent 1200 Module to Printer 124

This chapter provides information on cables used with the 1260 Infinity series of HPLC modules.

Cable Overview

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Analog cables

p/n	Description
35900-60750	Agilent module to 3394/6 integrators
35900-60750	Agilent 35900A A/D converter
01046-60105	Analog cable (BNC to general purpose, spade lugs)

Remote cables

p/n	Description
03394-60600	Agilent module to 3396A Series I integrators
	3396 Series II / 3395A integrator, see details in section "Remote Cables" on page 116 $$
03396-61010	Agilent module to 3396 Series III / 3395B integrators
5061-3378	Remote Cable
01046-60201	Agilent module to general purpose

BCD cables

p/n	Description
03396-60560	Agilent module to 3396 integrators
G1351-81600	Agilent module to general purpose

CAN cables

p/n	Description
5181-1516	CAN cable, Agilent module to module, 0.5 m
5181-1519	CAN cable, Agilent module to module, 1 m

LAN cables

p/n	Description
5023-0203	Cross-over network cable, shielded, 3 m (for point to point connection)
5023-0202	Twisted pair network cable, shielded, 7 m (for point to point connection)

External Contact Cable

p/n	Description
G1103-61611	External contact cable - Agilent module interface board to general purposes

RS-232 cables

p/n	Description
G1530-60600	RS-232 cable, 2 m
RS232-61601	RS-232 cable, 2.5 m Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It's also called "Null Modem Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9.
5181-1561	RS-232 cable, 8 m

Analog Cables

One end of these cables provides a BNC connector to be connected to Agilent modules. The other end depends on the instrument to which connection is being made.

Agilent Module to 3394/6 Integrators

p/n 35900-60750	Pin 3394/6	Pin Agilent module	Signal Name
	1		Not connected
	2	Shield	Analog -
	3	Center	Analog +

Agilent Module to BNC Connector

p/n 8120-1840	Pin BNC	Pin Agilent module	Signal Name	
x IIIO	Shield	Shield	Analog -	
	Center	Center	Analog +	

Agilent Module to General Purpose

p/n 01046-60105	Pin	Pin Agilent module	Signal Name
	1		Not connected
2	2	Black	Analog -
		Red	Analog +

Remote Cables

One end of these cables provides a Agilent Technologies APG (Analytical Products Group) remote connector to be connected to Agilent modules. The other end depends on the instrument to be connected to.

Agilent Module to 3396A Integrators

p/n 03394-60600	Pin 3396A	Pin Agilent module	Signal Name	Active (TTL)
	9	1 - White	Digital ground	
80 15	NC	2 - Brown	Prepare run	Low
	3	3 - Gray	Start	Low
	NC	4 - Blue	Shut down	Low
	NC	5 - Pink	Not connected	
	NC	6 - Yellow	Power on	High
	5,14	7 - Red	Ready	High
	1	8 - Green	Stop	Low
	NC	9 - Black	Start request	Low
	13, 15		Not connected	

Agilent Module to 3396 Series II / 3395A Integrators

Use the cable Agilent module to 3396A Series I integrators (03394-60600) and cut pin #5 on the integrator side. Otherwise the integrator prints START; not ready.

p/n 03396-61010	Pin 33XX	Pin Agilent module	Signal Name	Active (TTL)
	9	1 - White	Digital ground	
80 15	NC	2 - Brown	Prepare run	Low
• • •	3	3 - Gray	Start	Low
	NC	4 - Blue	Shut down	Low
	NC	5 - Pink	Not connected	
	NC	6 - Yellow	Power on	High
	14	7 - Red	Ready	High
	4	8 - Green	Stop	Low
	NC	9 - Black	Start request	Low
	13, 15		Not connected	

Agilent Module to 3396 Series III / 3395B Integrators

Agilent Module to Agilent 35900 A/D Converters

p/n 5061-3378	Pin 35900 A/D	Pin Agilent module	Signal Name	Active (TTL)
	1 - White	1 - White	Digital ground	
	2 - Brown	2 - Brown	Prepare run	Low
50 09	3 - Gray	3 - Gray	Start	Low
	4 - Blue	4 - Blue	Shut down	Low
	5 - Pink	5 - Pink	Not connected	
0	6 - Yellow	6 - Yellow	Power on	High
	7 - Red	7 - Red	Ready	High
	8 - Green	8 - Green	Stop	Low
	9 - Black	9 - Black	Start request	Low

o∕n 01046-60201	Wire Color	Pin Agilent module	Signal Name	Active (TTL)
	White	1	Digital ground	
	Brown	2	Prepare run	Low
	Gray	3	Start	Low
	Blue	4	Shut down	Low
	Pink	5	Not connected	
s 0 15	Yellow	6	Power on	High
	Red	7	Ready	High
	Green	8	Stop	Low
	Black	9	Start request	Low

Agilent Module to General Purpose

BCD Cables

One end of these cables provides a 15-pin BCD connector to be connected to the Agilent modules. The other end depends on the instrument to be connected to

Agilent Module to General Purpose

p/n G1351-81600	Wire Color	Pin Agilent module	Signal Name	BCD Digit
	Green	1	BCD 5	20
	Violet	2	BCD 7	80
	Blue	3	BCD 6	40
	Yellow	4	BCD 4	10
	Black	5	BCD 0	1
1 A A A A A A A A A A A A A A A A A A A	Orange	6	BCD 3	8
	Red	7	BCD 2	4
	Brown	8	BCD 1	2
	Gray	9	Digital ground	Gray
	Gray/pink	10	BCD 11	800
	Red/blue	11	BCD 10	400
	White/green	12	BCD 9	200
	Brown/green	13	BCD 8	100
	not connected	14		
	not connected	15	+ 5 V	Low

Agilent Module to 3396 Integrators

p/n 03396-60560	Pin 3396	Pin Agilent module	Signal Name	BCD Digit
	1	1	BCD 5	20
8 = 15	2	2	BCD 7	80
	3	3	BCD 6	40
	4	4	BCD 4	10
	5	5	BCD0	1
	6	6	BCD 3	8
	7	7	BCD 2	4
	8	8	BCD 1	2
	9	9	Digital ground	
	NC	15	+ 5 V	Low

CAN/LAN Cables

Both ends of this cable provide a modular plug to be connected to Agilent modules CAN or LAN connectors.

CAN Cables

p/n	Description
5181-1516	CAN cable, Agilent module to module, 0.5 m
5181-1519	CAN cable, Agilent module to module, 1 m

LAN Cables

p/n	Description
5023-0203	Cross-over network cable, shielded, 3 m (for point to point connection)
5023-0202	Twisted pair network cable, shielded, 7 m (for point to point connection)

11 Identifying Cables

External Contact Cable

External Contact Cable

One end of this cable provides a 15-pin plug to be connected to Agilent modules interface board. The other end is for general purpose.

Agilent Module Interface Board to general purposes

p/n G1103-61611	Color	Pin Agilent module	Signal Name
	White	1	EXT 1
	Brown	2	EXT 1
	Green	3	EXT 2
	Yellow	4	EXT 2
	Grey	5	EXT 3
	Pink	6	EXT 3
	Blue	7	EXT 4
	Red	8	EXT 4
	Black	9	Not connected
	Violet	10	Not connected
	Grey/pink	11	Not connected
	Red/blue	12	Not connected
	White/green	13	Not connected
	Brown/green	14	Not connected
	White/yellow	15	Not connected

Agilent Module to PC

p/n	Description
G1530-60600	RS-232 cable, 2 m
RS232-61601	RS-232 cable, 2.5 m Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It's also called "Null Modem Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9.
5181-1561	RS-232 cable, 8 m

11 Identifying Cables

Agilent 1200 Module to Printer

Agilent 1200 Module to Printer

p/n	Description
5181-1529	Cable Printer Serial & Parallel, is a SUB-D 9 pin female vs. Centronics connector on the other end (NOT FOR FW UPDATE). For use with G1323 Control Module.

Agilent 1260 Infinity TCC User Manual

12 Hardware Information

Firmware Description 126 Electrical Connections 129 Serial Number Information 1260 Infinity 130 Electrical Connections 129 Interfaces 131 Overview Interfaces 134 Setting the 8-bit Configuration Switch (without On-Board LAN) 138 Communication Settings for RS-232C 139 Special Settings 141 Instrument Layout 142

This chapter describes the detector in more detail on hardware and electronics.

Firmware Description

The firmware of the instrument consists of two independent sections:

- a non-instrument specific section, called resident system
- an instrument specific section, called main system

Resident System

This resident section of the firmware is identical for all Agilent 1100/1200/1220/1260/1290 series modules. Its properties are:

- the complete communication capabilities (CAN, LAN and RS-232C)
- memory management
- · ability to update the firmware of the 'main system'

Main System

Its properties are:

- the complete communication capabilities (CAN, LAN and RS-232C)
- memory management
- · ability to update the firmware of the 'resident system'

In addition the main system comprises the instrument functions that are divided into common functions like

- run synchronization through APG remote,
- · error handling,
- diagnostic functions,
- · or module specific functions like
 - internal events such as lamp control, filter movements,
 - raw data collection and conversion to absorbance.

Firmware Updates

Firmware updates can be done using your user interface:

· PC and Firmware Update Tool with local files on the hard disk

- Instant Pilot (G4208A) with files from a USB Flash Disk
- Agilent Lab Advisor software B.01.03 and above

The file naming conventions are:

PPPP_RVVV_XXX.dlb, where

PPPP is the product number, for example, 1315AB for the G1315A/B DAD,

R the firmware revision, for example, A for G1315B or B for the G1315C DAD,

VVV is the revision number, for example 102 is revision 1.02,

XXX is the build number of the firmware.

For instructions on firmware updates refer to section *Replacing Firmware* in chapter "Maintenance" or use the documentation provided with the *Firmware Update Tools*.

Update of main system can be done in the resident system only. Update of the resident system can be done in the main system only.

Main and resident firmware must be from the same set.

Figure 38 Firmware Update Mechanism

NOTE

12 Hardware Information

Firmware Description

NOTE

Some modules are limited in downgrading due to their main board version or their initial firmware revision. For example, a G1315C DAD SL cannot be downgraded below firmware revision B.01.02 or to a A.xx.xx.

Some modules can be re-branded (e.g. G1314C to G1314B) to allow operation in specific control software environments. In this case the feature set of the target type are use and the feature set of the original are lost. After re-branding (e.g. from G1314B to G1314C), the original feature set is available again.

All these specific informations are described in the documentation provided with the firmware update tools.

The firmware update tools, firmware and documentation are available from the Agilent web.

http://www.chem.agilent.com/_layouts/agilent/downloadFirmware.aspx?whid=69761

Electrical Connections

- The CAN bus is a serial bus with high speed data transfer. The two connectors for the CAN bus are used for internal module data transfer and synchronization.
- One analog output provides signals for integrators or data handling systems.
- The REMOTE connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features such as start, stop, common shut down, prepare, and so on.
- With the appropriate software, the RS-232C connector may be used to control the module from a computer through a RS-232C connection. This connector is activated and can be configured with the configuration switch.
- The power input socket accepts a line voltage of 100 240 VAC ± 10 % with a line frequency of 50 or 60 Hz. Maximum power consumption varies by module. There is no voltage selector on your module because the power supply has wide-ranging capability. There are no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Serial Number Information 1260 Infinity

The serial number information on the instrument labels provide the following information:

CCXZZ00000	Format	
CC	Country of manufacturing • DE = Germany • JP = Japan • CN = China	
Х	Alphabetic character A-Z (used by manufacturing)	
ZZ	Alpha-numeric code 0-9, A-Z, where each combination unambiguously denotes a module (there can be more than one code for the same module)	
00000	Serial number	

NOTE

The GPIB interface has been removed with the introduction of the 1260 Infinity modules.

Interfaces

The Agilent 1200 Infinity Series modules provide the following interfaces:

Table 8	Agilent 1200 Infinity Series Interfaces
---------	---

Module	CAN	LAN/BCD (optional)	LAN (on-board)	RS-232	Analog	APG Remote	Special
Pumps							
G1310B Iso Pump G1311B Quat Pump G1311C Quat Pump VL G1312B Bin Pump K1312B Bin Pump Clinical Ed. G1312C Bin Pump VL 1376A Cap Pump G2226A Nano Pump G5611A Bio-inert Quat Pump	2	Yes	No	Yes	1	Yes	
G4220A/B Bin Pump G4204A Quat Pump	2	No	Yes	Yes	No	Yes	CAN-DC- OUT for CAN slaves
G1361A Prep Pump	2	Yes	No	Yes	No	Yes	CAN-DC- OUT for CAN slaves
Samplers							
G1329B ALS G2260A Prep ALS	2	Yes	No	Yes	No	Yes	THERMOSTAT for G1330B/K1330B
G1364B FC-PS G1364C FC-AS G1364D FC-μS G1367E HiP ALS K1367E HiP ALS Clinical Ed. G1377A HiP micro ALS G2258A DL ALS G5664A Bio-inert FC-AS G5667A Bio-inert Autosampler	2	Yes	No	Yes	No	Yes	THERMOSTAT for G1330B/K1330B CAN-DC- OUT for CAN slaves
G4226A ALS	2	Yes	No	Yes	No	Yes	

12 Hardware Information

Interfaces

Table 8 Agilent 1200 Infinity Series Interfaces

Module	CAN	LAN/BCD (optional)	LAN (on-board)	RS-232	Analog	APG Remote	Special
Detectors							
G1314B VWD VL G1314C VWD VL+	2	Yes	No	Yes	1	Yes	
G1314E/F VWD K1314F Clinical Ed.	2	No	Yes	Yes	1	Yes	
G4212A/B DAD K4212B DAD Clinical Ed.	2	No	Yes	Yes	1	Yes	
G1315C DAD VL+ G1365C MWD G1315D DAD VL G1365D MWD VL	2	No	Yes	Yes	2	Yes	
G1321B FLD K1321B FLD Clinical Ed. G1321C FLD	2	Yes	No	Yes	2	Yes	
G1362A RID	2	Yes	No	Yes	1	Yes	
G4280A ELSD	No	No	No	Yes	Yes	Yes	EXT Contact AUTOZERO
Others							
G1170A Valve Drive	2	No	No	No	No	No	1
G1316A/C TCC K1316C TCC Clinical Ed.	2	No	No	Yes	No	Yes	
G1322A DEG K1322A DEG Clinical Ed.	No	No	No	No	No	Yes	AUX
G1379B DEG	No	No	No	Yes	No	Yes	
G4225A DEG K4225A DEG Clinical Ed.	No	No	No	Yes	No	Yes	

Module	CAN	LAN/BCD (optional)	LAN (on-board)	RS-232	Analog	APG Remote	Special
G4227A Flex Cube	2	No	No	No	No	No	CAN-DC- OUT for CAN slaves 1
G4240A CHIP CUBE	2	Yes	No	Yes	No	Yes	CAN-DC- OUT for CAN slaves THERMOSTAT for G1330A/B (NOT USED), K1330B

Table 8 Agilent 1200 Infinity Series Interfaces

Requires a HOST module with on-board LAN (e.g. G4212A or G4220A with minimum firmware B.06.40 or C.06.40) or with additional G1369C LAN Card

NOTE

The detector (DAD/MWD/FLD/VWD/RID) is the preferred access point for control via LAN. The inter-module communication is done via CAN.

- CAN connectors as interface to other modules
- · LAN connector as interface to the control software
- RS-232C as interface to a computer
- · REMOTE connector as interface to other Agilent products
- Analog output connector(s) for signal output

Overview Interfaces

CAN

The CAN is inter-module communication interface. It is a 2-wire serial bus system supporting high speed data communication and real-time requirement.

LAN

The modules have either an interface slot for an LAN card (e.g. Agilent G1369B/C LAN Interface) or they have an on-board LAN interface (e.g. detectors G1315C/D DAD and G1365C/D MWD). This interface allows the control of the module/system via a PC with the appropriate control software. Some modules have neither on-board LAN nor an interface slot for a LAN card (e.g. G1170A Valve Drive or G4227A Flex Cube). These are hosted modules and require a Host module with firmware B.06.40 or later or with additional G1369C LAN Card.

NOTE

If an Agilent detector (DAD/MWD/FLD/VWD/RID) is in the system, the LAN should be connected to the DAD/MWD/FLD/VWD/RID (due to higher data load). If no Agilent detector is part of the system, the LAN interface should be installed in the pump or autosampler.

RS-232C (Serial)

The RS-232C connector is used to control the module from a computer through RS-232C connection, using the appropriate software. This connector can be configured with the configuration switch module at the rear of the module. Refer to *Communication Settings for RS-232C*.

NOTE

There is no configuration possible on main boards with on-board LAN. These are pre-configured for

- 19200 baud,
- 8 data bit with no parity and
- one start bit and one stop bit are always used (not selectable).

The RS-232C is designed as DCE (data communication equipment) with a 9-pin male SUB-D type connector. The pins are defined as:

Pin	Direction	Function
1	In	DCD
2	In	RxD
3	Out	TxD
4	Out	DTR
5		Ground
6	In	DSR
7	Out	RTS
8	In	CTS
9	In	RI

 Table 9
 RS-232C Connection Table

Figure 40 RS-232 Cable

Analog Signal Output

The analog signal output can be distributed to a recording device. For details refer to the description of the module's main board.

APG Remote

The APG Remote connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features as common shut down, prepare, and so on.

Remote control allows easy connection between single instruments or systems to ensure coordinated analysis with simple coupling requirements.

The subminiature D connector is used. The module provides one remote connector which is inputs/outputs (wired- or technique).

To provide maximum safety within a distributed analysis system, one line is dedicated to **SHUT DOWN** the system's critical parts in case any module detects a serious problem. To detect whether all participating modules are switched on or properly powered, one line is defined to summarize the **POWER ON** state of all connected modules. Control of analysis is maintained by signal readiness **READY** for next analysis, followed by **START** of run and optional **STOP** of run triggered on the respective lines. In addition **PREPARE** and **START REQUEST** may be issued. The signal levels are defined as:

- standard TTL levels (0 V is logic true, + 5.0 V is false),
- fan-out is 10,
- input load is 2.2 kOhm against + 5.0 V, and
- output are open collector type, inputs/outputs (wired- or technique).

NOTE All common TTL circuits operate with a 5 V power supply. A TTL signal is defined as "low" or L when between 0 V and 0.8 V and "high" or H when between 2.0 V and 5.0 V (with respect to the ground terminal).

Table 10	Remote Signal Distribution
----------	----------------------------

Pin	Signal	Description
1	DGND	Digital ground
2	PREPARE	(L) Request to prepare for analysis (for example, calibration, detector lamp on). Receiver is any module performing pre-analysis activities.
3	START	(L) Request to start run / timetable. Receiver is any module performing run-time controlled activities.
4	SHUT DOWN	(L) System has serious problem (for example, leak: stops pump). Receiver is any module capable to reduce safety risk.
5		Not used
6	POWER ON	(H) All modules connected to system are switched on. Receiver is any module relying on operation of others.
7	READY	(H) System is ready for next analysis. Receiver is any sequence controller.
8	STOP	(L) Request to reach system ready state as soon as possible (for example, stop run, abort or finish and stop injection). Receiver is any module performing run-time controlled activities.
9	START REQUEST	(L) Request to start injection cycle (for example, by start key on any module). Receiver is the autosampler.

Special Interfaces

There is no special interface for this module.

Setting the 8-bit Configuration Switch (without On-Board LAN)

Setting the 8-bit Configuration Switch (without On-Board LAN)

The 8-bit configuration switch is located at the rear of the module.

This module does not have its own on-board LAN interface. It can be controlled through the LAN interface of another module, and a CAN connection to that module.

Figure 41 Configuration switch (settings depend on configured mode)

All modules without on-board LAN:

- default should be ALL DIPS DOWN (= best settings)
 - Bootp mode for LAN and
 - 19200 baud, 8 data bit / 1 stop bit with no parity for RS-232
- DIP 1 DOWN and DIP 2 UP allows special RS-232 settings
- for boot/test modes DIPS 1+2 must be UP plus required mode

NOTE

For normal operation use the default (best) settings.

Switch settings provide configuration parameters for serial communication protocol and instrument specific initialization procedures.

NOTE

With the introduction of the Agilent 1260 Infinity, all GPIB interfaces have been removed. The preferred communication is LAN.

Hardware Information 12

Setting the 8-bit Configuration Switch (without On-Board LAN)

NOTE The following tables represent the configuration switch settings for the modules without on-board LAN only.

Mode Select	1	2	3	4	5	6	7	8
RS-232C	0	1	Baudrate			Data Parity Bits		
Reserved	1	0	Reserved					
TEST/BOOT	1	1	RSVD	SY	S	RSVD	RSVD	FC

Table 11 8-bit Configuration Switch (without on-board LAN)

NOTE

The LAN settings are done on the LAN Interface Card G1369B/C. Refer to the documentation provided with the card.

Communication Settings for RS-232C

The communication protocol used in the column compartment supports only hardware handshake (CTS/RTR).

Switches 1 in down and 2 in up position define that the RS-232C parameters will be changed. Once the change has been completed, the column instrument must be powered up again in order to store the values in the non-volatile memory.

	Mode Select	1	2	3	4	5	6	7	8
Î	RS-232C	0	1		Baudrate		Data Bits	Pari	ity

 Table 12
 Communication Settings for RS-232C Communication (without on-board LAN)

Use the following tables for selecting the setting which you want to use for RS-232C communication. The number 0 means that the switch is down and 1 means that the switch is up.

12 Hardware Information

Setting the 8-bit Configuration Switch (without On-Board LAN)

Switches		Switches Baud Rate			Switches			
3	4	5		3	4	5		
0	0	0	9600	1	0	0	9600	
0	0	1	1200	1	0	1	14400	
0	1	0	2400	1	1	0	19200	
0	1	1	4800	1 1 1		38400		

Table 13 Baudrate Settings (without on-board LAN)

Table 14 Data Bit Settings (without on-board LAN)

Switch 6	Data Word Size
0	7 Bit Communication
1	8 Bit Communication

 Table 15
 Parity Settings (without on-board LAN)

Swite	ches	Parity
7	8	
0	0	No Parity
0	1	Odd Parity
1	1	Even Parity

One start bit and one stop bit are always used (not selectable).

Per default, the module will turn into 19200 baud, 8 data bit with no parity.

Special Settings

The special settings are required for specific actions (normally in a service case).

Boot-Resident

Firmware update procedures may require this mode in case of firmware loading errors (main firmware part).

If you use the following switch settings and power the instrument up again, the instrument firmware stays in the resident mode. It is not operable as a module. It only uses basic functions of the operating system for example, for communication. In this mode the main firmware can be loaded (using update utilities).

 Table 16
 Boot Resident Settings (without on-board LAN)

Mode Select	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
TEST/BOOT	1	1	0	0	1	0	0	0

Forced Cold Start

A forced cold start can be used to bring the module into a defined mode with default parameter settings.

CAUTION Loss of data

Forced cold start erases all methods and data stored in the non-volatile memory. Exceptions are calibration settings, diagnosis and repair log books which will not be erased.

→ Save your methods and data before executing a forced cold start.

If you use the following switch settings and power the instrument up again, a forced cold start has been completed.

 Table 17
 Forced Cold Start Settings (without on-board LAN)

Mode Select	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
TEST/BOOT	1	1	0	0	0	0	0	1

12 Hardware Information Instrument Layout

Instrument Layout

The industrial design of the module incorporates several innovative features. It uses Agilent's E-PAC concept for the packaging of electronics and mechanical assemblies. This concept is based upon the use of expanded polypropylene (EPP) layers of foam plastic spacers in which the mechanical and electronic boards components of the module are placed. This pack is then housed in a metal inner cabinet which is enclosed by a plastic external cabinet. The advantages of this packaging technology are:

- virtual elimination of fixing screws, bolts or ties, reducing the number of components and increasing the speed of assembly/disassembly,
- the plastic layers have air channels molded into them so that cooling air can be guided exactly to the required locations,
- the plastic layers help cushion the electronic and mechanical parts from physical shock, and
- the metal inner cabinet shields the internal electronics from electromagnetic interference and also helps to reduce or eliminate radio frequency emissions from the instrument itself.

13 Appendix

General Safety Information 144 Safety Symbols 144 General Safety Information 145 Safety Standards 145 Operation 145 The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC) 147 Lithium Batteries Information 148 Radio Interference 149 Sound Emission 150 Use of Solvents 151 Agilent Technologies on Internet 152

This chapter provides addition information on safety, legal and web.

General Safety Information

General Safety Information

Safety Symbols

Table 18	Safety Symbols
----------	----------------

Symbol	Description				
⚠	The apparatus is marked with this symbol when the user should refer to the instruction manual in order to protect risk of harm to the operator and to protect the apparatus against damage.				
\$	Indicates dangerous voltages.				
	Indicates a protected ground terminal.				
	Indicates eye damage may result from directly viewing the light produced by the deuterium lamp used in this product.				
<u>Ass</u>	The apparatus is marked with this symbol when hot surfaces are available and the user should not touch it when heated up.				

WARNING

A WARNING

alerts you to situations that could cause physical injury or death.

→ Do not proceed beyond a warning until you have fully understood and met the indicated conditions.

CAUTION

A CAUTION

alerts you to situations that could cause loss of data, or damage of equipment.

→ Do not proceed beyond a caution until you have fully understood and met the indicated conditions.
General Safety Information

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

WARNING

Ensure the proper usage of the equipment.

The protection provided by the equipment may be impaired.

The operator of this instrument is advised to use the equipment in a manner as specified in this manual.

Safety Standards

This is a Safety Class I instrument (provided with terminal for protective earthing) and has been manufactured and tested according to international safety standards.

Operation

Before applying power, comply with the installation section. Additionally the following must be observed.

Do not remove instrument covers when operating. Before the instrument is switched on, all protective earth terminals, extension cords, auto-transformers, and devices connected to it must be connected to a protective earth via a ground socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in serious personal injury. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any intended operation.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, and so on) are used for

General Safety Information

replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.

Some adjustments described in the manual, are made with power supplied to the instrument, and protective covers removed. Energy available at many points may, if contacted, result in personal injury.

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided whenever possible. When inevitable, this has to be carried out by a skilled person who is aware of the hazard involved. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present. Do not replace components with power cable connected.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

Do not install substitute parts or make any unauthorized modification to the instrument.

Capacitors inside the instrument may still be charged, even though the instrument has been disconnected from its source of supply. Dangerous voltages, capable of causing serious personal injury, are present in this instrument. Use extreme caution when handling, testing and adjusting.

When working with solvents, observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet by the solvent vendor, especially when toxic or hazardous solvents are used.

Appendix The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC)

The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC)

Abstract

The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC), adopted by EU Commission on 13 February 2003, is introducing producer responsibility on all Electric and Electronic appliances from 13 August 2005.

NOTE

This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste.

Product Category: With reference to the equipment types in the WEEE Directive Annex I, this product is classed as a "Monitoring and Control instrumentation" product.

Do not dispose off in domestic household waste

To return unwanted products, contact your local Agilent office, or see www.agilent.com for more information.

13

13 Appendix

Lithium Batteries Information

Lithium Batteries Information

WARNING

Lithium batteries may not be disposed-off into the domestic waste. Transportation of discharged Lithium batteries through carriers regulated by IATA/ICAO, ADR, RID, IMDG is not allowed.

Danger of explosion if battery is incorrectly replaced.

- Discharged Lithium batteries shall be disposed off locally according to national waste disposal regulations for batteries.
- → Replace only with the same or equivalent type recommended by the equipment manufacturer.

Radio Interference

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Test and Measurement

If test and measurement equipment is operated with equipment unscreened cables and/or used for measurements on open set-ups, the user has to assure that under operating conditions the radio interference limits are still met within the premises.

Sound Emission

Manufacturer's Declaration

This statement is provided to comply with the requirements of the German Sound Emission Directive of 18 January 1991.

This product has a sound pressure emission (at the operator position) < 70 dB.

- Sound Pressure Lp < 70 dB (A)
- At Operator Position
- Normal Operation
- According to ISO 7779:1988/EN 27779/1991 (Type Test)

Use of Solvents

Observe the following recommendations on the use of solvents.

- · Brown glass ware can avoid growth of algae.
- Small particles can permanently block capillaries and valves. Therefore always filter solvents through 0.4 μm filters.
- Avoid the use of the following steel-corrosive solvents:
 - Solutions of alkali halides and their respective acids (for example, lithium iodide, potassium chloride, and so on),
 - High concentrations of inorganic acids like sulfuric acid and nitric acid, especially at higher temperatures (if your chromatography method allows, replace by phosphoric acid or phosphate buffer which are less corrosive against stainless steel),
 - Halogenated solvents or mixtures which form radicals and/or acids, for example:

2CHCl₃ + O₂ \rightarrow 2COCl₂ + 2HCl

This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol,

- Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, di-isopropylether) such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides,
- · Solvents containing strong complexing agents (e.g. EDTA),
- Mixtures of carbon tetrachloride with 2-propanol or THF.

13 Appendix

Agilent Technologies on Internet

Agilent Technologies on Internet

For the latest information on products and services visit our worldwide web site on the Internet at:

http://www.agilent.com

Index

configuration one stack 29

8

8-bit configuration switch without On-Board LAN 138

A

Agilent Lab Advisor software 59 Agilent Lab Advisor 59 Agilent on internet 152 algae 151 ambient non-operating temperature 25 ambient operating temperature 25 analog signal 135 analog cable 114 apg remote 136

B

battery safety information 148 BCD cable 119 bench space 24

C

cable analog 114 BCD 119 CAN 121

external contact 122 LAN 121 remote 116 RS-232 123 cables analog 112 BCD 112 CAN 113 external contact 113 LAN 113 overview 112 112 remote RS-232 113 calibration temperature 82, 55 CAN cable 121 cautions and warnings 92 cleaning 96 column clip 46 column identification 16 tag 45 column switching valve (optional) description 18 precolumn backflushing 20 19 two column selection column temperature 75 column changing column and tags 97 Communication settings RS-232C 139 compensation sensor open 68 compensation sensor short 68 condensation 24 Configuration

two stack32cool-down time26cooling concept11cover violation71

D

dead volume 26 defect on arrival 28 defective heater circuit 76 defective temperature sensor 72 delivery checklist 28 dimensions 25

Ε

electrical connections descriptions of 129 electrostatic discharge (ESD) 93 error messages column temperature 75 compensation sensor open 68 68 compensation sensor short cover violation 71 defective heater circuit 76 defective temperature sensor 72 heater profile 73 heatsink temperature 75 leak sensor open 67 leak sensor short 67 leak 66 left fan failed 69 left temperature timeout 71 lost CAN partner 65 open cover 70 remote timeout 64

Index

right fan failed 70 right temperature timeout 72 shutdown 63 timeout 63 valve failed 74 external contact cable 122

F

features GLP 26.26 safety and maintenace 26 firmware description 126 main system 126 resident system 126 update tool 127 updates 126, 103, 103 upgade/downgrade 103 upgrade/downgrade 103 frequency range 25 function test 80 failed result 78

G

general error messages 63 GLP features 26

Н

heater profile 73 heating concept 11 heatsink temperature 75 humidity 25

installation bench space 24 capillaries and waste tubings 43

column 43.43 flow connections 41 38 module temperature sensor 90 unpacking 28 instrument layout 142 interfaces 131 internet 152 introduction concept of heating and cooling 11 system overview 11

Κ

kit spring 107

L

IAN 121 cable leak sensor open 67 leak sensor short 67 leak 66 leaks. correcting 102 left fan failed 69 left temperature timeout 71 line frequency 25 line voltage 25 lithium batteries 148 lost CAN partner 65

Μ

maintenance replacing firmware 103, 103 message remote timeout 64

Ν

non-operating altitude 25

non-operating temperature 25

0

open cover 70 operating Altitude 25 operating temperature 25 optimization 51 optimizing the performance 52

Ρ

packaging damaged 28 parts identification cables 111 leak panels 109 performance Optimization 51 optimizing 52 specifications and features 26 physical specifications 25 22 power consideration 25 power consumption power cords 23 power supply indicator 56

R

remote cable 116 repairs cautions and warnings 92 changing the column 97 column switching valve parts 99 correcting leaks 102 overview 95 replacing firmware 103, 103 right fan failed 70 right temperature timeout 72 RS-232C cable 123

Agilent 1260 Infinity TCC User Manual

Index

communication settings 139

S

safety class I 145 safety information lithium batteries 148 safety general information 145 standards 25 symbols 144 serial number information 130 shutdown 63 site requirements 23 power cords solvents 151 sound emission 150 special interfaces 137 special settings boot-resident 141 forced cold start 141 specification physical 25 specifications 26 spring 107 kit status indicator 57 system overview 11

Т

tag installation 45 temperature calibration description 82 problems 89 temperature sensor 66 temperature verification 55 principle 90 temperature

range 26 test functions 54 tests available tests vs interface 58 test thermostat function test failed 80 thermostat function test result 78 timeout 63 troubleshooting available tests vs interface 58 error messages 54, 62 54.56 status indicators

U

unpacking 28 User Interfaces diagnosic tests 58

V

valve failed 74 verification temperature 55 voltage range 25

W

warm-up time 26 warnings and cautions 92 weight 25 www.agilent.com

In This Book

This manual contains technical reference information about the Agilent 1260 Infinity Thermostatted Column Compartment (G1316A TCC).

The manual describes the following:

- introduction and specifications,
- installation,
- using and optimizing,
- · troubleshooting and diagnose,
- maintenance,
- parts identification,
- safety and related information.

© Agilent Technologies 2010-2012, 2013

Printed in Germany 05/2013

G1316-90014

