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a b s t r a c t

Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating
complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks
based on their retention times and intensities. Two techniques commonly used for two-dimensional peak
detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the
performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the
second-column separations. In that analysis, the peak retention-time shifts were corrected while applying
the two-step algorithm but the watershed algorithm was applied without shift correction. The results
indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-
dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-
detection performance for resolved peaks after correcting retention-time shifts for both the two-step and
watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is
employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy
than the two-step method.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Comprehensive two-dimensional gas chromatography
(GC×GC) is a powerful technology for separating and analyz-
ing compounds in complex samples. GC×GC data is processed
to detect peaks and identify the associated compounds present
in a sample. Typically, the goal of peak detection is to separately
aggregate the data points belonging to each analyte peak. GC×GC
peak detection popularly is performed by one of two approaches:
the two-step algorithm [1] and the watershed algorithm [2,3]. In
the two-step algorithm, traditional one-dimensional (1D) peak
detection is employed on each secondary chromatogram, then
detected 1D peaks are merged to form two-dimensional (2D)
peaks. The watershed algorithm performs peak detection by oper-
ating on 2D neighborhoods, i.e., in both retention-time dimensions
simultaneously.

A recent study by Vivó-Truyols and Janssen [4] analyzed the
effects of second-column retention-time shifts on the performance
of 2D peak-detection techniques. Retention-time shift in consecu-
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tive secondary chromatograms in GC×GC may occur due to factors
such as rapid temperature or pressure changes [5]. Rapid chromato-
graphic changes can induce shifts that complicate data processing
because all chromatographic peaks of a compound are expected
to have the same retention-time. If the chromatography is rapidly
varying (and cannot be improved to yield data without rapid peak
shifts), then data processing and peak detection should account for
retention-time shifts. Skov et al. [6] examined the nature and theory
of retention-time shifts in GC×GC and described a method for shift
correction based on cross-correlation for individual mass channels
in adjacent secondary chromatograms. In the two-step algorithm,
1D peak merging typically accounts for retention-time shifts. For
the watershed algorithm, retention-time shifts can be determined
(e.g., with cross-correlation [6]) and then corrected either by align-
ing the data before peak detection or equivalently by adjusting the
2D neighborhoods of the watershed algorithm to account for shifts.

In their analysis, Vivó-Truyols and Janssen [4] compared the
effects of retention-time shifts on both the two-step and water-
shed peak-detection algorithms. For the two-step approach, 1D
peak merging accounted for retention-time shifts, whereas no shift
corrections were made with the watershed algorithm. Their results
indicated that watershed algorithm failed at a higher rate due
to uncorrected second-dimension retention-time shifts. However,
their comparison of peak-detection performance was confounded
by accounting for retention-time shift in the two-step algorithm but
not accounting for retention-time shift in the watershed algorithm.

0021-9673/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.chroma.2011.07.052
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This paper re-evaluates the performance of the two-step and
watershed algorithms for retention-time shifts in the second-
column separations when both employ shift correction. Simulated
data is used to rigorously evaluate the peak-detection algo-
rithms under controlled conditions with different levels of noise,
retention-time shifts, and peak widths. The retention-time shifts
in each simulated peak are corrected prior to both peak-detection
algorithms for an unbiased comparison. These experiments demon-
strate that when retention-time shift is corrected for both
algorithms, the watershed algorithm detects peaks more accu-
rately, over a wide range of conditions.

2. Peak detection in comprehensive two-dimensional
chromatography

2.1. Two-step peak detection algorithm

The two-step algorithm builds on peak-detection methods used
in traditional gas chromatography. In the first step, 1D peaks in
each secondary chromatogram are detected by a 1D peak-detection
algorithm. In the second step, a peak merging algorithm determines
which of the detected 1D peaks should be merged to form 2D peaks
[7].

The two-step algorithm typically uses two criteria to determine
which 1D peaks should be merged: the overlap and unimodality
criteria. The overlap criterion compares two adjacent 1D peaks in
consecutive second-dimension chromatograms and determines if
the peaks can be merged based on their retention-time overlap.
Vivó-Truyols and Janssen [4] check the difference in second-
dimension retention-time of two candidate 1D peaks and merge
them if the difference is smaller than a predetermined threshold
[8]. Setting that threshold allows the overlap criterion to account
for retention-time shifts between secondary chromatograms. The
unimodality criterion ensures that 2D peaks have only one local
maximum. Initially, a single 1D peak in a secondary chromatogram
is made part of a 2D peak. Then, 1D peaks in adjacent second-
dimension chromatograms are added to the 2D peak if they satisfy
the overlap and unimodality criteria [7].

2.2. Watershed algorithm

The watershed algorithm, originally used in image segmenta-
tion [9], was adapted for 2D chromatographic peak detection by
Reichenbach et al. [2,3]. Conceptually, the algorithm initiates detec-
tion at the apex of a peak and iteratively adds all smaller neighbors
until no more smaller points border the peak [10]. The watershed
algorithm can be implemented with a priority queue to sort all data
points. The largest data point is extracted and labeled first. This is
followed by the next largest point in the queue. Each point drawn
out of the queue is compared with its neighbors. If the neighbors are
of equal or larger value, the extracted point is given the same label
as its largest neighbor. However, if the data point is larger than its
neighbors, it is given a new label to indicate that it is part of another
peak. This procedure is repeated until the queue is empty.

Retention-time shifts can be corrected either prior to peak
detection or in the watershed algorithm itself. For example, before
peak detection, cross-correlation can be used to determine the
alignment for shifted second-dimension chromatograms [6]. Cross-
correlation measures the similarity between 1D chromatograms for
possible shifts (within a specified range) and indicates the required
shift correction. Then, prior to peak detection, shift correction can
be applied to the data to align the secondary chromatograms. Alter-
natively, shifts can be corrected as a part of the watershed algorithm
by using the shift correction (e.g., as identified by cross-correlation)
to adjust the 2D neighborhood for a point. Fig. 1(a) shows the stan-

Fig. 1. Retention-time shift correction of −1 applied to a 2D neighborhood (indi-
cated by dark gray background) in the watershed algorithm: (a) unshifted and (b)
shifted.

dard 3 × 3 neighborhood (dark background) around a data point
with value 1306 (gray background) at the center of a peak that has
a skew of −1. In Fig. 1(b), the retention-time skew is corrected by
shifting the 2D neighborhood by −1.

3. Simulation experiments

3.1. Overview of simulation

In the experiments described here, simulated 2D chromato-
graphic peaks are used to rigorously compare both peak-detection
algorithms under controlled conditions for different levels of noise,
retention-time shifts, and peak widths. A single, resolved peak is
simulated by interval sampling a 2D Gaussian function with para-
metric retention-time peak widths. Fig. 2(a) displays an example
2D peak as a series of 1D peaks. Each 1D second-column peak mod-
els a 1D chromatogram at a characteristic retention-time for the
first chromatographic column.

To experimentally evaluate the effects of retention-time shifts in
the secondary chromatograms, a skew is introduced in the 2D peak
that shifts each 1D chromatogram as shown in Fig. 2(b). The skew
reduces the overlap of peak regions belonging to two consecutive
1D peaks in the 2D chromatogram. This simulates second-column
retention-time shifts in comprehensive 2D chromatography, for
instance, retention-time shifts due to an extreme thermal gradi-
ent that induces rapid chromatographic changes. The expression
for parametric skew is:

�(i) = (i − �x)s (1)

where �(i) is the shift introduced in each secondary chromatogram,
i is the position of each data point along the x-dimension (the first-
column separation), �x is the peak apex in the x-dimension, and s
is the skew parameter that controls the shift.

The peak model is a Gaussian function (normalized to have unit
integrated volume) subject to second-dimension skew:

f [i, j] = 1
2��x�y

∫ i+(1/2)

i−(1/2)

∫ j+(1/2)

j−(1/2)

× e−(((x−�x)2/2�x
2)+((y−�y+�(i))2/2 2�y )) dx dy (2)

where f[i, j] is the measured signal intensity of the chromatographic
peak at position [i, j], i and j are the retention-time indices of the
data array along the x and y dimensions respectively, �x and �y

represent the peak’s retention-time apex in the x and y dimensions
respectively, �(i) is the shift in each secondary chromatogram, and
�x and �y parameterize the width of the peak along the x and y
dimensions respectively. The units for skew and peak widths are
the data array index intervals (i.e., the data sampling intervals of
retention times).

The array size that is required to contain the simulated peak is 
determined by the peak-width 
standard deviations, �x and �y, 
and the skew parameter, s:
M = �9�x + 2�



i n s p i r a t i o n m e e t s i n n o v a t i o n !


Your supplier of GCXGC and LCXLC software

I. Latha et al. / J. Chromatogr. A 1218 (2011) 6792–6798

(b) 2D Peak with Skew

(a) 2D Peak
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(d) 2D Peak with Skew and Noise, after Skew Correction
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(c) 2D Peak with Skew and Noise
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Fig. 2. Simulation of the input signal: (a) slices of a sampled 2D peak displaying each secondary 1D peak, (b) shifted slices incorporating a skew in the 2D peak, (c) slices of
the skewed 2D peak with random Gaussian noise, (d) slices of the skewed 2D peak with noise after skew correction. The standard deviation of noise is �n , the peak-width
standard deviation in the x-dimension is �x , and the peak-width standard deviation in the y-dimension is �y: (a) 2D peak, (b) 2D peak with skew, (c) 2D peak with skew and
noise and (d) 2D peak with skew and noise, after skew correction.

N = �9�y + s (M − 1) + 2� (4)

where M is the number of columns in the array or the array size
along the x-dimension and N is the number of rows in the array or
the array size along the y-dimension. The size of the array along
the y-dimension is a function of s, M, and �y, to accommodate the
retention-time shifts in the secondary chromatograms. The peak
is centered in the array by setting (�x, �y) to (M/2, N/2). For com-
putational convenience, the array is padded with zeros along its
boundary.

Normally distributed random noise with parametric standard
deviation is added to generate 2D data as shown in Fig. 2(c):

g[i, j] = f [i, j] + �nGi,j (5)

where g[i, j] is the intensity of the noisy chromatographic data at
position [i, j], f[i, j] is the shifted peak given by Eq. (2), �n is the
parametric standard deviation of noise, and Gi,j is a random number
from a normal distribution. The unit for noise is the total response
(i.e., volume) of the two-dimensional Gaussian peak.

3.2. Peak detection

Peak detection is performed on the noisy 2D chromatographic
peak given by Eq. (5). In the analysis, cross-correlation and shift
correction are performed prior to peak detection by both methods.
Cross-correlation identifies the shift correction required to align the
1D columns by comparing the 1D chromatograms for each relative
retention-time shift within the prescribed range. The shift correc-
tion is determined by the maximum cross-correlation between 1D
chromatograms. A sampled 2D peak after shift correction is shown
in Fig. 2(d).

The simulation involves only one peak, so the peak-detection
algorithms are configured to use two labels indicating if a data point
is or is not in the analyte peak:

l[i, j] =
{

1 if in peak,

0 otherwise
(6)

where, l[i, j] is the label assigned for the data point at [i, j].

3.2.1. Two-step algorithm

The two-step algorithm, as 
outlined by Peters et al. [7], 
is per-formed on the 
shift-corrected 2D peak, 
e.g., as shown in Fig. 2(d).



i n s p i r a t i o n m e e t s i n n o v a t i o n !


Your supplier of GCXGC and LCXLC software

I. Latha et al. / J. Chromatogr. A 1218 (2011) 6792–6798

ba

0 5 10 15 20

Y
σn= 0.005, σx=1, σy=1

0

0.1

0

0.1

0

0.1

   
Si

gn
al

0

0.1

0

0.1
X=5

X=4

X=3

X=2

X=1

0 5 10 15 20

Y
σn= 0.005, σx=1, σy=1

0

0.1

0

0.1

0

0.1

Si
gn

al

0

0.1

0

0.1 X=5

X=4

X=3

X=2

X=1

Fig. 3. Two-step peak detection applied to each 1D slice of the 2D signal followed by peak merging. The detected peak is marked by filled circles. (a) Input to two-step peak 
detection algorithm. (b) Peak detection by two-step algorithm.

In the first step, 1D peak detection is performed on each sec-
ondary chromatogram. With reference to [7], Thr0 = 0 and Thr1 = 0
so that every 1D peak is detected minima to minima. Next, the
largest peak apex in the 2D chromatogram is identified. In the other
secondary chromatograms (which have been shift-corrected), the
overlap criterion selects the peak that overlaps (in the second-
column retention time) the apex of the largest 2D peak. In any
secondary chromatogram that a minimum point between two 1D
peaks coincides (in the second-column retention time) with the
apex of the largest 2D peak, the 1D peak with its apex closer to the
largest 2D peak apex is selected and if the two 1D peaks are at the
same distance from the largest peak apex, the peak with the largest
apex is selected. With reference to [7], ThrOV=0, so at least one data
point must overlap. (These parametric settings for the two-step
algorithm are the least restrictive and so maximize performance in
the simulation experiments.) The unimodality criterion compares
the 1D peak apex of consecutive 1D peaks to ensure the presence
of a single peak maximum in the 2D peak. An example of a 2D peak
detected by the two-step algorithm is shown in Fig. 3. The filled cir-

cles indicate the data points of the peak detected by the two-step
method (i.e., labeled ‘1’) and the open circles are data points that
are not part of the detected peak (i.e., labeled ‘0’). The detected peak
satisfies both the overlap and unimodality criteria.

3.2.2. Watershed algorithm
The watershed algorithm also is performed on the same shift-

corrected 2D peak, e.g., as shown in Fig. 2(d). The algorithm starts
at the peak apex. The largest data point in the peak is identified
and labeled. Then, in order by intensity, each successive point in
the 2D matrix is given the label of its largest neighbor. Fig. 4 shows
the peak detected by the watershed algorithm for the example 2D
peak, with data points in the detected peak marked by filled circles
and data points not in the detected peak marked with open circles.

3.3. Experimental setup

Four parameters are varied in the simulation experiments: (a)
noise standard deviation, �n, from 0.0001 to 0.01; (b) peak-width
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Fig. 4. The watershed algorithm applied to 2D data for peak detection. The detected peak is marked by filled circles. (a) Input to watershed algorithm. (b) Peak detection by
watershed algorithm.
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Table 1
Results for the watershed (WS) and two-step (2-step) peak-detection algorithms for peaks with various x-dimension peak-width standard deviation, �x; y-dimension peak-
width standard deviation, �y; and noise standard deviation, �n . In each case, the expected mean is 1.000. For each algorithm, each test with different parameter values was
repeated 1000 times with random noise.

Skew Peak Noise Array size Signal WS 2-Step Signif.

s �x �y �n Mean S.D. Mean S.D. Error Failed Mean S.D. Error Failed (1 − p)

−1 1.00 1 0.0001 11×21 1.0000 0.0013 0.9997 0.0010 −0.0003 0 0.9995 0.0009 −0.0005 0 1.0000
−1 1.00 1 0.0005 11×21 0.9999 0.0061 0.9984 0.0045 −0.0015 0 0.9974 0.0040 −0.0024 0 1.0000
−1 1.00 1 0.0010 11×21 1.0006 0.0124 0.9974 0.0082 −0.0032 0 0.9949 0.0073 −0.0057 0 1.0000
−1 1.00 1 0.0050 11×21 1.0021 0.0597 0.9846 0.0368 −0.0174 0 0.9761 0.0328 −0.0260 0 1.0000
−1 1.00 1 0.0100 11×21 1.0063 0.1227 0.9649 0.0706 −0.0415 0 0.9451 0.0598 −0.0612 0 1.0000

−1 0.25 1 0.0001 5×15 1.0000 0.0006 0.9999 0.0006 −0.0001 0 0.9999 0.0005 −0.0001 0 0.0000
−1 0.50 1 0.0001 7×17 1.0000 0.0008 0.9998 0.0007 −0.0001 0 0.9997 0.0007 −0.0003 0 0.9986
−1 1.00 1 0.0001 11×21 1.0000 0.0013 0.9997 0.0010 −0.0003 0 0.9995 0.0009 −0.0005 0 1.0000
−1 2.00 1 0.0001 20×30 1.0000 0.0020 0.9994 0.0012 −0.0006 0 0.9989 0.0011 −0.0011 0 1.0000

−1 1.00 1 0.0001 11×21 1.0000 0.0013 0.9997 0.0010 −0.0003 0 0.9995 0.0009 −0.0005 0 1.0000
−1 1.00 2 0.0001 11×30 1.0000 0.0015 0.9996 0.0012 −0.0003 0 0.9987 0.0013 −0.0013 0 1.0000
−1 1.00 4 0.0001 11×48 1.0000 0.0019 0.9990 0.0015 −0.0010 0 0.9904 0.0045 −0.0096 0 1.0000
−1 1.00 8 0.0001 11×84 1.0000 0.0028 0.9951 0.0028 −0.0048 39 0.9093 0.0182 −0.0906 341 1.0000

standard deviation along the x-dimension, �x, from 0.25 to 2; (c)
peak-width standard deviation along the y-dimension, �y, from 1 to
8; and (d) skew, s, from −8 to −1. (The differing ranges for the peak
widths in the two dimensions reflect the typical practice that peaks
are more highly sampled in the second-column separation than the
first.) For each value assigned to �n, �x, �y, and s, the experiment is
conducted T = 1000 times to observe the performance of the peak-
detection algorithms for different input signals. The simulated 2D
peak volume mean and standard deviation are calculated as:

SignalMean, �s = 1
T

∑
t

∑
i,j

gt[i, j] (7)

SignalStandardDeviation, �s =
√

1
T

∑
t

∑
i,j

gt[i, j]2 − �2
s (8)

where T is the number of test cases executed for each algorithm
and gt[i, j] is the data point at [i, j] in test case t.
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Fig. 5. Comparison of the peak volume means and standard deviations for the input
signal, watershed, and two-step method as a function of the noise standard devia-
tion, �n . Performance of peak detection algorithms as a function of noise.
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Fig. 6. Comparison of the peak volume mean and standard deviation for the input
signal, watershed, and two-step method as a function of first-column peak width,
�x . Performance of peak detection algorithms as a function of peak width, �x .
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Fig. 7. Comparison of the peak volume mean and standard deviation for the input
signal, watershed, and two-step method as a function of second-column peak width,
�y . Performance of peak detection algorithms as a function of peak width, �y .
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Fig. 8. In two-step peak detection, each column is a secondary chromatogram that undergoes 1D peak detection. Points included in the main peak are shown in dark gray
and points not included are shown in light gray. The order that points are detected is shown in sequence from left to right.

For the two-step and watershed algorithms, the detected peak
volume mean and standard deviation are computed as:

Mean, � = 1
T

t

∑∑
i,j

(gt[i, j] lt[i, j]) (9)

StandardDeviation, � =
√

1
T

∑∑
(gt[i, j] lt[i, j])2 − �2 (10)

t i,j

where lt[i, j] is the label assigned for the data point gt[i, j].

4. Results

Table 1 compares results of both peak-detection algorithms
for various parameter values, with 1000 test cases for each set of
parameter values. In all cases shown in Table 1, the skew was −1,
but, with skew correction, results for other levels of skew are not
materially different. (Complete experimental test results for the
simulations are reported as Supplementary Data.)

Table 1 lists the volume means and standard deviations for
the signal and both peak-detection algorithms with different noise
levels and peak widths. Table 1 also shows the mean errors for
both peak-detection algorithms, i.e., the difference between the
mean volume computed for the signal and the mean volume of the
detected peak, and the number of failed test cases for the watershed
and two-step algorithms. If the detected peak does not include all
data points within one standard deviation from the peak apex in
both dimensions, then the detection for the test case is counted as
a failure and is not included in computing the peak volume mean
and standard deviation. Table 1 displays only one such case. In that
case, the two-step algorithm has a larger number of failures than
the watershed algorithm. The errors for the two peak-detection
methods are compared in the following paragraphs and the accom-
panying figures.

Table 1 also reports tests of statistical significance. The peak vol-
umes for the two peak-detection methods in each test case were
compared using independent-samples t-tests. As seen in Table 1,
which reports one minus the p-values computed from the Student’s
t-distribution rounded to the nearest one-thousandth, the differ-
ence in detected peak volume by the two methods is statistically

significant in most cases. In only one case, in which the first-
dimension peak-width is narrow (�x = 0.25) and there is little noise
(�x = 0.0001), is the difference not significant. These tests suggest
that the better results of the watershed algorithm are significant
and almost certainly would be observed in repeated experiments.

Table 1 and Fig. 5 show the means and standard deviations of
the peak volume for the input signal, watershed, and two-step
algorithm for various noise levels (and unit peak-width standard
deviations). As indicated by the difference between the mean signal
and the means of the peak-detection methods (shown with points
in Fig. 5), the watershed algorithm performs peak detection with
greater accuracy and the difference in performance increases with
increasing noise. Both methods underestimate peak volume and
the underestimation increases with increasing noise. The under-
estimation is due to over-segmentation (discussed after these
results), where a single chromatographic peak is detected as mul-
tiple peaks. As indicated by the standard deviations (shown with
error bars in Fig. 5), the two-step algorithm has greater precision;
however, it is notable that peak volumes for both methods have
smaller standard deviations than the signal. The reduced standard
deviations are related to the underestimation, e.g., always detecting
the peak volume to be zero would have zero standard deviation.

Table 1 and Fig. 6 compare the means and standard deviations
of the detected peak volume for various x-dimension peak widths
(with constant noise and unit peak-width standard deviation �y).
Both algorithms perform peak detection with similar accuracy and
precision for narrow peaks, but as the peak width increases, the
watershed algorithm has better accuracy.

Similar but more dramatic results are seen in Table 1 and
Fig. 7 when the peak width along the y-dimension increases (with
constant noise and unit peak-width standard deviation �x). The
watershed algorithm has much better accuracy and precision than
the two-step algorithm for the widest peaks. Also, for the widest
peaks, the two-step algorithm had many more failed detections
(341/1000) compared to the watershed algorithm (39/1000).

In the simulation, as the peak width along either or both dimen-
sions increases, the signal-to-noise ratio (SNR), i.e., the ratio of the
mean to the standard deviation of the signal, decreases due to the
larger number of data points, fixed noise level, and constant volume
under the peak. Decreased SNR increases over-segmentation (i.e.,

Fig. 9. The watershed algorithm labels data points (shown in dark gray) in intensity-order in the 2D chromatogram. The 
order that points are detected is shown in sequence from left to right.
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peak splits) with both peak-detection algorithms. In the two-step
algorithm, each point is compared only to its two neighbors in the
1D chromatogram for the presence in a peak. If noise changes either
neighbor sufficiently, the peak is over-segmented. In the experi-
ments, the watershed algorithm performs better than the two-step
approach because it considers the 2D neighborhood of each data
point to identify the data points in a 2D peak, thereby, reducing the
effect of noise.

Figs. 8 and 9 illustrate peak detection for the two-step and the
watershed algorithms, respectively, with a simulated peak after
skew correction. The effect of noise on the signal can be observed at
the circled data points, which have slightly larger values than their
neighbors in the secondary chromatogram.

Fig. 8 illustrates the two-step peak-detection process in three 1D
chromatograms. Initially, the largest data point in each secondary
chromatogram is labeled. This is followed by labeling adjacent
points in the 1D chromatograms and then merging the 1D peaks
as described in Section 2.1. The circled data points are larger than
their neighbors in the secondary chromatogram, hence they are
not included in the 1D peaks. So, the chromatogram is split into
multiple peaks even though there is only one peak in the 2D chro-
matogram.

Fig. 9 illustrates the watershed detection process on the 2D
matrix. In each step, data points are evaluated in intensity-order
to determine the peak label. Initially, the largest point is labeled.
Then, the next largest data point in the 2D matrix is labeled and
the process continues until all points in the matrix are labeled. For
the circled data points, there is a neighbor in the peak with a larger
value. The circled points adopt the label of their largest neighbor
and thus all data points are labeled correctly as a single peak.

The simulation experiments demonstrate that with shift cor-
rection applied for both peak-detection algorithms, the watershed
algorithm achieves more accurate peak detection than the two-
step approach for varying noise levels, peak widths, and shifts. And,
as both noise and peak widths increase, the two-step algorithm
has more failed detections than the watershed algorithm. Varying
the second-column retention-time shift did not materially impact
these results because shift correction is performed for both algo-
rithms. Detailed simulation results, including experimental results
for larger retention-time shifts, are provided as Supplementary
Data.

5. Conclusion

A study by Vivó-Truyols and Janssen [4] discussed the proba-
bility of failure of the watershed algorithm for GC×GC data with
varying second-dimension retention-time shifts. Their analysis
compared the two-step and watershed peak-detection algorithms
without accounting for the retention-time shifts in the watershed
algorithm, whereas the shift was accounted for in the two-step
algorithm. This caused the watershed algorithm to have a larger
probability of failure than the two-step approach. This paper ana-
lyzes the performance of the two algorithms when correction for
retention-time shifts is performed for both algorithms.

A series of simulation experiments evaluated both peak-
detection techniques for varying levels of noise, peak widths, and
retention-time shifts. The watershed algorithm performed bet-
ter than the two-step approach when skew correction is applied

for both the methods. Neither the two-step algorithm nor the
watershed algorithm ensures successful peak detection under all
conditions. As the peak width and noise increase, both techniques
detect peaks less accurately, even with shift correction.

The performance of both the two-step and watershed algo-
rithms could be improved by noise suppression, e.g., smoothing
before peak detection. Various noise suppression techniques can
be used with both peak-detection techniques. Noise suppression
was not used in these experiments because the method(s) for doing
so would be a confounding variable in comparing the performance
of the peak detection methods. And, although noise suppression
can attenuate the effect of noise, the progressive effect of increas-
ing noise on the performance of peak-detection algorithms cannot
be eliminated. Similarly, the issue of coelutions, although impor-
tant for peak detection, was not considered herein, as neither
the two-step nor watershed algorithm incorporates a solution for
coelution. Other techniques have been developed for unmixing
coeluted peaks, e.g., [11–21].
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