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Interactive visualization of data from a new generation of chemical imaging systems requires coding that is efficient and 
accessible. New technologies for secondary ion mass spectrometry (SIMS) generate large three-dimensional, hyperspectral 
datasets with high spatial and spectral resolution. Interactive visualization is important for chemical analysis, but the raw 
dataset size exceeds the memory capacities of typical current computer systems and is a significant obstacle. This paper 
reports the development of a lossless coding method that is memory efficient, enabling large SIMS datasets to be held in fast 
memory, and supports quick access for interactive visualization. The approach provides pixel indexing, as required for 
chemical imaging applications, and is based on the statistical characteristics of the data. The method uses differential time-of-

flight to effect mass-spectral run-length-encoding and uses a scheme for variable-length, byte-unit representations for both 
mass-spectral time-of-flight and intensity values. Experiments demonstrate high compression rates and fast access. Copyright 
# 2009 John Wiley & Sons, Ltd.

The lossless coding scheme described in this paper facilitates

rapid visualization and analysis of large, multi-dimensional,

hyperspectral datasets generated by a new generation of

chemical imaging systems such as the time-of-flight

secondary ion mass spectrometry (ToF-SIMS) instrument

developed by Vickerman and co-workers at the Manchester

Interdisciplinary Biocentre (MIB) in conjunction with

Ionoptika (Chandler’s Ford, UK).1 In ToF-SIMS, a beam of

primary ions is directed onto a target, eroding molecules

and molecular fragments as neutral species and ions (i.e.

secondary ions) from the target surface (as illustrated in

Fig. 1). The secondary ions that are eroded from the target

surface are electrostatically accelerated to a detector

that measures their intensity as a function of flight time –

data that can be converted into mass spectra.2 The primary-

ion beam can be directed in a raster pattern to create a mass-

spectral image and the raster scanning can be repeated to

generate a three-dimensional (3D) mass-spectral image, as

illustrated in Fig. 2.

The Ionoptika J105 3D chemical imager has been detailed

elsewhere.1 Briefly, it combines several advances, including

polyatomic primary-ion beams and an advanced buncher for 
secondary ions that facilitates a continuous-beam primary-ion probe. 
Polyatomic primary-ion beams (e.g. buckmin-sterfullerene, [C60]

þ) 
provide greater secondary-ion yield, more uniformity in the 
secondary-ion yield, and less damage to the substrate of the target 
than traditional primary-ion beams.3 Greater yield improves the 
signal-to-noise ratio and sensitivity. Improved uniformity enhances 
effective resol-ution and allows more accurate mapping of chemical 
constituents. With reduced sub-surface degradation, as the surface is 
eroded, subsequent scans across the target yield more accurate depth 
profiling to improve 3D chemical imaging. An innovative secondary-
ion buncher shapes the electric field that propels the secondary ions 
for the time-of-flight (ToF) mass spectrometer, thereby focusing the 
vari-able-sized, variable-positioned secondary ions. Time focus-ing 
obviates the need to pulse the primary-ion beam to limit the time 
range of the secondary ions, which allows quasi-continuous 
operation of the primary-ion beam. The con-tinuous primary-ion 
beam provides faster analyses and increased spatial resolution. The 
system then uses a harmonic-field reflectron with the property that 
the time-of-flight in and out of the reflector depends on mass-to-

charge only (and not on their variable energy). This creative design 
provides high-precision mass spectrometry even with continuous 
operation of the primary-ion beam.

The system’s high spatial resolution, fine mass precision, and high-
sensitivity surface and depth-profile characteriz-ations of the 
molecular chemistry of 
heterogeneous materials, 
including biological tissues
 and cells, promise to
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provide an informational basis for important advances in a wide 
variety of applications, including cancer treatments. However, the 
volume of data produced poses a significant challenge for interactive 
visualization and analysis.
When fully operational, this ToF-SIMS instrument will produce 3D 

datasets of the order of 5123 spectra with tens of thousands of ToF 
channels. In the example datasets presented here, individual mass 
spectra are sampled in up to 85 000 ToF channels at a rate of 1 ns per 8-
bit intensity (a raw data rate of 1 gigabyte per second) and 
accumulated in hardware with an Ortec Fastflight-2TM (Oak Ridge, 
TN, USA). In the example datasets, 200 to 1000 raw spectra are 
accumulated per pixel, but the number may be larger or smaller 
depending on the application. If no more than 256 spectra are 
accumulated, each accumulated intensity can be represented with a 
16-bit unsigned integer in the raw data file, reducing the data rate to 
10 megabytes per second (MB/s). However, a 128 � 128, 16-layer 
image with 85 000 2-byte ToF channels requires 45 gigabytes (GB) 
without com-pression and even a single two-dimensional slice with

Figure 1. Primary ions directed at the target erode second-

ary ions for analysis by mass spectrometry.

Figure 2. A 3D SIMS image colorized for intensity in mass spectral ranges. (Data from 
Fletcher et al.3 Visualization and analysis software from GC Image, LLC.) This figure is 
available in color online at www.interscience.wiley.com/journal/rcm.
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512� 512 data points with 85,000 2-byte ToF channels

requires 45GB. Datasets of tens to hundreds of gigabytes

cannot be held in the fast memory of typical computer

systems, which creates a bottleneck for interactive visual-

ization and analysis with general-purpose imaging software.

Real-time, interactive, 3D visualization and analysis require

memory-efficient coding.

The most important access mode for interactive SIMS

visualization is retrieving spectra by pixel (i.e. spatial

position). Analysts determine chemical compositions on

the basis of mass-spectral characteristics, so viewing of the

mass spectra is fundamental. Common interactive oper-

ations are to view the mass spectrum at a point in the image

space indicated by point-and-click and to view the mass

spectrum summed over a spatial region indicated by

drawing. An important operation is to generate a classifi-

cation rule(s) based onmass spectra in two (ormore) regions.

Analysts also view a mass-spectral range (e.g. for a selected

ion) across the image space, but such spectral-spatial viewing

does not require immediate interactivity to the degree

required in pixel-oriented spatial-spectral access. Moreover,

operations to generate spatial maps from their spectra

require pixel-by-pixel access to many or all ToF channels, e.g.

to map regions that satisfy a classification rule.

Tretter et al.4 cite two approaches among methods for

lossless compression of hyperspectral images: predictive

coding and reversible transforms, each followed by context

modeling and coding. Both approaches can be applied either

with respect to the spatial dimensions or to the spectral

dimension (or both). Predictive coding has been the

predominant approach for hyperspectral data. Lossless

transform coding methods for hyperspectral data are newer

and typically require greater computation than lossless

predictive methods, but may achieve greater compression.

Given the motivation of interactive visualization and

analysis of SIMS data, low computational complexity is

more important than optimal compression, so the more

traditional approach of predictive coding may be better

suited. Given the primary need for spatial access in SIMS

analysis, each pixel spectrum should be compressed

separately.

This paper describes a new approach that codes individual

spectra, consistent with the predominant access mode for

SIMS analysis, based on statistical and structural character-

istics of SIMS spectra. Unlike some hyperspectral data

generated by remote sensing satellites, for which many

hyperspectral compression methods have been developed,

SIMS spectra have many zero values and the probability

distribution of the intensity values is skewed significantly,

decreasing rapidly with magnitude. In addition, many of the

non-zero values are in adjacent ToF channels, forming peaks

in the mass spectra. Other technologies, such as matrix-assisted laser 
desorption/ionization mass spectrometry (MALDI-MS) and confocal 
fluorescence or Raman micro-scopy, may produce data with similar 
statistical character-istics, in which case the approach described here 
would be applicable. As described in the next section, these statistical 
characteristics can be exploited to give highly compressed data that can 
be accessed quickly.

SIMS DATA CHARACTERISTICS

The most notable characteristic of SIMS hyperspectral data is that many 
of the intensity values are zero. As shown in Table 1, more than 96% of 
all intensity values in each of the example datasets are zero. (The 
datasets are divided into units smaller than 2GB to facilitate 
experimental processing.) For example, of the 1380 million spectral 
intensities for target 20071213z0 (128 � 128 with 85 000 ToF channels), 
only 38 million non-zero intensities are recorded. This character-istic of 
the data reflects the fact that the number of chemical constituents at a 
sample point of the target limits the number of secondary ions and 
therefore the number of peaks in each mass spectrum.

Another important characteristic of the data is that the probability 
distribution of the intensity values decreases with intensity. Many of 
the non-zero values are equal to one (many of which may be noise but 
must be coded in a lossless method) and most non-zero values are less 
than 256. Because of the large number of zero values and the 
long-tailed skewed probability distributions, least-squares predictors, 
which are effective for remote sensing data, do not perform well for 
SIMS data. For example, with the example dataset 20071213z0, the 
optimal least-squares predictor based on the previous intensity value 
in the spectrum reduces the variance in the residual (from that 
variance of the data), but increases the entropy to 0.45 bits/value 
compared with the original dataset entropy of 0.34 bits/value. 

(Entropy is computed as 
P

i P[i] lg(P[i]), where i is each intensity value 
and P[i] is the probability of the intensity value.)
Another characteristic of the datasets is that peaks in the mass spectra 

may be wider than the ToF channels, so each mass-spectral peak may 
cause several non-zero values in adjacent ToF channels. The high 
probability of zero values and the clustering of non-zero values suggest 
that run length encoding may be used to effectively code the long runs of 
zeros between non-zero values. Commonly used sparse array 
representations of mass spectra (i.e. recording the mass and value for 
each non-zero value) similarly take advantage of the large number of 
zeros to efficiently represent MS data. If, instead of the ToF channel 
index, the differential of indexes of non-zero-valued channels is used 
(i.e. the
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Table 1. Intensity probability distributions (%)

Dataset Count(M) P(x¼ 0) P(x¼ 1) P(1< x< 28) P(28� x< 216) P(216� x) Entropy

GridSpot 938 96.85 1.08 1.87 0.21 0.00 0.36
20071213z0 1380 97.22 0.31 2.48 0.00 0.00 0.34
20071213z1 1371 98.04 0.22 1.75 0.00 0.00 0.25
20071213z2 1360 98.65 0.15 1.20 0.00 0.00 0.18
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difference between the index of the next channel with a non-

zero value and one more than the index of the current non-

zero channel), the result is a run length code. For example, if

the channels with non-zero values are 7, 50, 89, 188, 189, 198,

199, 200, . . .; then the differentials of the indices are 6, 42, 38,

98, 0, 8, 0, 0, . . ., which are just the run lengths of the zeros.

The probability distribution and entropy of the example

ToF differentials is shown in Table 2. Because the non-zero

values tend to be clustered, more than half of the ToF

differentials in each of the example datasets are equal to zero.

Many of the other differentials are less than 256. For the

dataset 20071213z0, the total entropy of the ToF differentials

(entropy per value times number of values) is 17MB with

only 38 million non-zero intensities to be coded. This

approach is the basis of the method described in the next

section.

SIMS DATA COMPRESSION
Based on the SIMS data characteristics, the method

developed here separately codes the ToF differentials and

non-zero intensity values. Because many of the ToF

differentials are zero, it is important to code them most

efficiently. Because the compressed data will be decoded for

visualization, the approach uses representations of integer

byte-lengths which do not require computation for decoding

– just byte copies. Accordingly, the method uses 2-bit length

codes to record the number of bytes for each ToF differential

and zero bytes are used if the differential is zero. The length

codes (in binary) are: 00 if the differential is zero, with

no separate representation of the differential; 01 if the

differential is in the range 1–255, with the differential coded

in one byte; 10 if the differential is in the range 256–65535,

with the differential is coded in two bytes; and 11 if the

differential is 65536 or larger, with the differential coded in

four bytes. Thus, only two bits are required for the ToF

differentials that are equal to zero, 10 bits are required for

the ToF differentials in the range 1–255, etc. For the example

above, with ToF differentials 6, 42, 38, 98, 0, 8, 0, 0, . . ., the

length codes would be 0101010100010000 (two bytes in

binary) and the differential codes would be 062A266208 (five

bytes in hexadecimal). The differential codes can be retrieved

quickly using byte copies. For the dataset 20071213z0, this

coding of the ToF differentials requires 24MB, compared

with the total entropy of 17MB, but allows very rapid

decoding (as documented in the next section) at the cost of a

relatively small difference in compression.

The non-zero intensity values could be compressed by any

method, but the scheme used for the ToF differentials can be

used and is justified by the significant number of ones and

small values. The integer byte-length scheme also allows

quick retrieval of the intensity for a specific channel,

decoding only the ToF differentials and the intensity byte-

lengths to locate the byte(s) with the intensity value. Thus,

here, the non-zero intensity values are reduced by one (so

that the smallest value to be recorded, which is one, is

mapped to zero) and then coded using the length-coding

scheme described above. For the dataset 20071213z0, this

coding of the non-zero values requires 44MB, compared with

a total entropy of 27MB for the non-zero values, but here also

decoding requires only byte copies and is very fast (as

documented in the next section).

RESULTS
This section compares the speed and compression of the

proposed SIMS compression method with GZIP (in java.

util.zip5), arithmetic codingwith an adaptive unigrammodel

(in com.colloquial.arithcode6), and arithmetic coding with

Prediction by Partial Matching7,8 (PPM(3) in com.colloquial.

arithcode). Each method was applied separately to each of

the spectra in each of the datasets.

Table 3 summarizes the compression times and sizes. (The

raw dataset type for each intensity is a four-byte integer.)

PPM(3) with arithmetic coding requires more computation

but achieves better compression than the adaptive unigram

model with arithmetic coding, and the adaptive unigram

model with arithmetic coding requires more computation

but achieves better compression than GZIP. These results are

as expected. The SIMS coding method achieved the greatest

compression, but more importantly was very rapid. The

encoding times for the SIMS method were less than 30% of

1232 S. E. Reichenbach et al.

Table 2. ToF differential probability distributions (%)

Dataset Count(M) P(d0 ¼ 0) P(0<d0< 28) P(28�d0< 216) P(216�d0) Entropy

GridSpot 30 54.18 43.78 2.04 0.00 4.36
20071213z0 38 65.00 31.60 3.40 0.00 3.60
20071213z1 27 64.64 30.44 4.92 0.00 3.76
20071213z2 18 64.34 28.77 6.94 0.00 3.94

Table 3. Compression and decompression times and sizes

Dataset GZIP Adaptive Unigram PPM(3) SIMS

Name
Size
(MB)

Encode
time(s)

Decode
time(s)

Size
(MB)

Encode
time(s)

Decode
time(s)

Size
(MB)

Encode
time(s)

Decode
time(s)

Size
(MB)

Encode
time(s)

Decode
time(s)

Size
(MB)

Grid Spot 3750 88 28 76 1621 1846 56 1743 2546 54 26 1 50
20071213z0 5520 134 40 98 2386 2739 74 2760 4172 73 38 1 68
20071213z1 5486 126 40 72 2380 2735 55 2501 3669 53 37 1 48
20071213z2 5440 123 41 52 2414 2788 41 2347 3345 38 37 1 33
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the times for GZIP. More importantly, the decompression

times for the SIMS method were less than 3% of the times for

GZIP. Decompression is especially fast because only the

bytes for the non-zero intensities must be copied into the

output array.

The compression rate for all methods would enable fairly

large ToF-SIMS datasets to be stored in the memory of

current desktop systems (typically 2–8 GB). Pixel mass

spectra are compressed to an average of about 3 kB to 6 kB, so

with any of the methods a typical memory could hold more

than 1M spectra (e.g. a 1024� 1024 slice or even a 643 or 1283

visualization data cube). The performance of the SIMS

method, both for compression and decoding speed, is

excellent.

CONCLUSIONS

This paper describes the development of a new coding

method for multi-dimensional hyperspectral data generated

by advanced chemical imaging systems, such as ToF-SIMS.

The method is designed based on data characteristics to

provide indexed access to pixel spectra with very rapid

decoding. Experimental results indicate that the method

achieves memory-efficient compression and provides quick

access. Although the method was developed and tested for

ToF-SIMS data, it should be effective for other sparse

hyperspectral data with predominantly small values and

skewed probability distribution.
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