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a b s t r a c t

This review surveys different approaches for generating features from comprehensive two-dimensional
chromatography for non-targeted cross-sample analysis. The goal of non-targeted cross-sample analysis
is to discover relevant chemical characteristics (such as compositional similarities or differences) from
multiple samples. In non-targeted analysis, the relevant characteristics are unknown, so individual fea-
tures for all chemical constituents should be analyzed, not just those for targeted or selected analytes.
Cross-sample analysis requires matching the corresponding features that characterize each constituent
across multiple samples so that relevant characteristics or patterns can be recognized. Non-targeted,
cross-sample analysis requires generating and matching all features across all samples. Applications of
non-targeted cross-sample analysis include sample classification, chemical fingerprinting, monitoring,
sample clustering, and chemical marker discovery. Comprehensive two-dimensional chromatography is a
powerful technology for separating complex samples and so is well suited for non-targeted cross-sample
analysis. However, two-dimensional chromatographic data is typically large and complex, so the com-
putational tasks of extracting and matching features for pattern recognition are challenging. This review
examines five general approaches that researchers have applied to these difficult problems: visual image
comparisons, datapoint feature analysis, peak feature analysis, region feature analysis, and peak-region
feature analysis.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The goal of non-targeted cross-sample analysis is to discover
relevant chemical characteristics (such as compositional
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similarities or differences) from multiple samples. Some applica-
tions of non-targeted cross-sample analysis are:

• Classification. Given a sample from an unknown class and exem-
plary samples from a set of known classes, determine the class
of the unknown sample. For example, given samples of cancer-
ous tumors labeled by grade, determine the tumor grade for an
ungraded sample [1].

• Chemical fingerprinting. Given a sample from an unknown
source and exemplary samples from multiple known sources,

0021-9673/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
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determine the source of the unknown sample. For example, given
a sample of environmental pollution from an unknown source
and labeled samples from several possible sources of the pollu-
tion, identify the source for the pollution [2]. Fingerprinting is a
type of classification problem except that each class is restricted
to a single source, whereas the general classification problem
allows each class to have multiple similar sources.

• Monitoring. Given a sequence of samples, identify samples that
have uncharacteristic differences with other samples, e.g., for
quality assurance. Monitoring also can be used to discover trends
in sample sequences, even recognizing subtle changes if they are
progressive or cyclical. For example, use a time-sequence of sam-
ples from an environmental oil spill to track and understand the
weathering processes on oil constituents [3].

• Clustering. Given a set of samples, partition subsets such that
samples within each subset are relatively similar and samples
in different subsets are relatively dissimilar. For example, given
multiple samples from oil reservoirs, use clustering to determine
the number of distinct reservoirs [4].

• Marker discovery. Given a set of exemplary samples from known
classes, determine the chemical characteristics that are most rel-
evant for distinguishing the classes. For example, given samples
of tumors labeled by grade, determine which characteristics (i.e.,
biomarkers) are most useful in distinguishing different tumor
grades [1].

Non-targeted cross-sample analysis should evaluate each and
every constituent in each and every sample. For non-targeted anal-
ysis, the relevant chemical characteristics are not known, so the
analysis should generate characteristic feature(s) for each and every
constituent. Typically, detector intensities or mass spectral (total
and/or selected ion) intensities are used as characteristic features
because they indicate the analyte concentrations (or amounts)
and provide information for chemical identification. Cross-sample
analysis should compare the same chemical characteristics across
multiple samples, so it is necessary to correctly match the corre-
sponding features that characterize the same analyte in different
samples. For example, peak matching would establish which peaks
in different samples result from the same analyte. Typically, other
features, such as retention times and/or mass spectral signatures,
are used to match the characteristic features.

Non-targeted cross-sample analysis requires comprehensive,
selective, matched, accurate features. If the features are not com-
prehensive, then relevant characteristics may not be analyzed. If
the features are not selective, then relevant trace constituents may
be obscured by more prevalent but less relevant constituents. If the
features are not matched, then the analysis is confounded by incor-
rect comparisons. If the features are not accurate, then the analysis
may be unable to detect subtle differences.

Comprehensive two-dimensional gas chromatography
(GC × GC) and related techniques are well-suited for non-
targeted cross-sample analysis because they offer increased
separation capacity, higher dimensional structure–retention rela-
tionships, and improved signal-to-noise ratio (SNR), compared
to traditional one-dimensional chromatography. Comprehensive
two-dimensional chromatography preserves separations at each
stage and submits the entire sample to analysis, providing for com-
prehensive features. Increased separation capacity enables more
selective features. The higher dimensional structure relationships
can be exploited for better matched features. And, the improved
SNR increases the quantitative accuracy of characteristic features.

Comprehensive two-dimensional chromatography offers
unprecedented information on compositional characteristics of
complex samples, but the size and complexity of the data makes
data analysis to extract that information a challenging problem.
The most relevant features for a particular cross-sample analysis

may be related to trace constituents and/or unidentified com-pounds. 
Relevant patterns may involve subtle relationships among multiple 
features. So, the goal of non-targeted cross-sample anal-ysis is to extract 
and analyze all of the information that could be relevant. In some sense, 
it is the ultimate information processing challenge.

The typical data processing sequence for non-targeted cross-
sample analysis is:

1. Preprocess individual chromatograms.
2. Generate features for each chromatogram.
3. Match features across chromatograms.
4. Recognize relevant patterns.

The purpose of this review is to examine various approaches that 
researchers have applied to Steps 2 and 3 — feature genera-tion and 
matching — but Steps 1 and 4 merit a brief discussion. Preprocessing 
(Step 1) involves operations (e.g., baseline correc-tion [5–8], peak 
detection [9–13], coeluted peak detection [14–25], and alignment 
[24,26–36]) that prepare data for further analysis, but which are not 
specific to non-target cross-sample analysis. Therefore, general 
preprocessing methods can be used for these operations. In pattern 
recognition (Step 4), the matched compara-tive features are analyzed to 
recognize relevant characteristics or patterns among samples. Such 
pattern recognition is not specific to chromatographic analysis and so 
can be performed with various general-purpose methods, including 
statistical methods such as principal component analysis (PCA), analysis 
of variance (ANOVA), and discriminant function analysis (DFA), and 
machine-learning methods such as support vector machines (SVM), 
neural networks, and decision trees [1,4,31,35–58]. Of course, research 
continues to improve methods for preprocessing and pattern 
recognition and to evaluate their effectiveness for non-targeted cross-
sample chro-matographic analysis, but that research is not the focus of 
this review.

This review describes five different types of features that have been 
used for non-targeted cross-sample analyses with comprehensive two-
dimensional chromatography: visual images, datapoints, peaks, regions, 
and peak-regions. Visual images present chromatograms using various 
methods for two-dimensional data, including pseudo-colorization, 
contour plots, and three-dimensional projections. Datapoint analyses 
treat each datapoint as a feature, allowing chromatograms to be 
compared intensity by intensity. Peak-based approaches attempt to 
separately inte-grate the intensities from multiple datapoints that are 
induced by each individual analyte. Regional features aggregate 
datapoints in separate regions of the two-dimensional chromatographic 
plane. Peak-region methods attempt to define a region for each 
individual analyte.

Some examples of previous research illustrate each approach to 
generating and matching features for two-dimensional chro-
matographic analyses, with most research involving GC × GC. The order 
of presentation roughly follows the historical development. The 
discussion of each approach presents advantages and problem-atic 
issues. Other authors have provided more general reviews of GC × GC 
and related technologies and provide a broader context for this review 
[59–77].

2. Visual features

The earliest non-targeted cross-sample analyses with com-
prehensive two-dimensional chromatography were conducted
without benefit of software specifically designed for oper-
ating on two-dimensional chromatographic data. Therefore,
most early cross-sample comparisons were primarily qualitative
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visual comparisons using general-purpose software. In particu-
lar, two-dimensional chromatograms can be regarded as digital
images of the chromatographic plane. Digital images are two-
dimensional arrays of intensities and the datapoint intensities
of two-dimensional chromatograps are represented naturally in
two-dimensional arrays arranged so that the abscissa (X-axis,
left-to-right) is the elapsed time for the first-column separation
and the ordinate (Y-axis, bottom-to-top) is the elapsed time for
the second-column separation. Then, digital image visualization
and processing methods can be used for two-dimensional chro-
matograms.

In 1990, Bushey and Jorgenson [78] demonstrated comprehen-
sive two-dimensional liquid chromatography LC × LC and showed
data from a UV detector as surface plots with three-dimensional
projection to two dimensions. They presented side-by-side visual-
izations of reconstituted serum from a human and from a horse,
but did not make explicit comparisons of the samples.

Blomberg et al. [79] showed side-by-side two-dimensional con-
tour plots of GC × GC data from a flame ionization detector (FID)
for distillation fractions of a heavy catalytic cracked cycle oil before
and after hydrogenation to illustrate the conversion of olefins and
sulfur compounds. Their results showed that “a clear distinction
between different products is visible immediately” [79, p. 544]. For
perspective on the computers of the time, they used a computer
with 100 MHz processor, 32 megabytes of memory, and generic
scientific data processing and visualization software. The authors
noted the need for more automated processing to characterize and
compare samples: “The vast amount of data generated, necessitate
that considerable effort has to be put in software and hardware
developments for automated interpretation” [79, p. 544].

Gaines et al. [2] presented GC × GC–FID data from an oil spill
sample and from two potential sources for the spill as pseudo-
colorized images with a cold-to-hot color scale for qualitative visual
comparison. Their goal was to demonstrate GC × GC for oil spill
source identification, an application of fingerprinting. The visual
comparison allowed them to note that one of the sources exhibited
considerably fewer peaks in the heavy aromatic region than the
spill, which suggested that it was not the source for the spill. They
also made selected quantitative comparisons for fingerprinting, as
described here in subsequent sections.

Reddy et al. [80] used a side-by-side sequence of pseudo-
colorized images to visualize GC × GC–FID data from progressively
weathered samples of a fuel oil standard for comparison to an image
of data from a sample of a decades-old fuel oil spill. Their goal was
to understand progressive changes in the oil. The visual compar-
isons allowed them to observe that 70% evaporative weathering of
the standard was required to effect the same level of reduction of
naphthalenic compounds observed in the oil spill sample, but that
level of weathering also removed other components that still were
present in the oil spill sample. They were able to conclude that evap-
orative weathering could not solely account for the GC × GC pattern
observed in the oil-spill sample and that other factors, such as water
washing, preferential biodegradation, and microbial degradation
were required to explain the actual weathering of the oil spill.

Others have used visual comparisons for similar purposes.
Janssen et al. [81] visualized LC × GC–FID data for samples of edible
oils and fats as two-dimensional bubble plots with circles indicat-
ing detected peaks (with dot locations determined by retention
from LC and carbon number from GC and dot areas determined
by intensity). Perera et al. [82] showed a region of GC × GC–FID
data as contour plots to fingerprint headspace volatiles from plant
samples. Hope et al. [83] used contour plots to compare total
intensity counts (TICs) of data from GC × GC with time-of flight
(TOF) mass spectrometry (MS) for pre and post harvest lawn
grass extracts. Shellie et al. [39] used GC × GC–TOFMS to ana-
lyze mouse spleen samples, then (a) visually compared averaged

chromatograms from obese mice to averaged chromatograms from 
control mice, (b) computed the difference between the averaged 
chromatograms and showed images of the positive and negative 
values, (c) compared bubble plots for averaged peaks, and (d) com-pared 
bubble plots for relative weighted differences of averaged peaks 
(dividing by the average standard deviation among sample groups).

Hollingsworth et al. [32] developed software methods for 
automatically aligning chromatograms using reference peaks, 
normalizing intensities, and visualizing the differences by vari-ous 
image-based methods, including time-loop flicker (switching between 
images) and colorized differences. Fig. 1 illustrates a small 
chromatographic region with benzene, toluene, ethylbenzene, and 
xylene (BTEX) peaks and a visualization of the differences between two 
aligned chromatograms. Nelson et al. [84] and Wardlaw et al.[85] used 
these methods to illustrate weathering of an oil spill and oil seep. 
Cordero et al. [51] used these methods to compare chro-matograms 
from coffee samples. Such visualizations of pointwise differences 
provide a segue to the next approach for non-targeted multi-sample 
analyses — pointwise feature analysis.

Visual comparisons continue to be used both as a preliminary tool 
and as an investigatory and confirmatory method for auto-mated 
methods. However, visual analyses are insufficient in several respects: 
the approach is not quantitative, subtle differences and complex 
patterns may not be visible, and the approach is not well suited for 
cross-sample analysis with large sample sets.

3. Datapoint features

Quantitative pointwise comparison is a natural progression
from visual image comparison. In a pointwise approach, chro-
matograms are compared point-by-point (or in imaging terms 
pixel-by-pixel). With this approach, each datapoint is a feature and the 
datapoint features at the same retention times are implicitly matched.

In 2002, Johnson and Synovec [37] used quantitative datapoint 
features (i.e., the chromatographic intensities at each datapoint) of GC × 
GC–FID data to recognize patterns in different jet fuel mix-tures. Their 
first experiments involved five replicates for each of nine different 
mixtures of two fuels for a total of 45 chromatograms each with 120 K 
datapoints. Their second experiments involved three replicates for each 
of 13 different classes for a total of 39 chromatograms each with 105 K 
datapoints. The potential rele-vance of each feature was computed by 
ANOVA, as the Fisher f ratio — the variance between classes divided by 
the variance within classes. Then, features were selected based on a f-
ratio threshold that yielded good class separation in the space defined by 
the first two components of PCA. In this way, they reduced the number 
of features to a few hundred, which gave good PCA separation of classes 
and good organization in a K-means dendrogram.

Mohler et al. [40] and Pierce et al. [41] applied PCA to GC × GC–
TOFMS datapoint intensities at selected mass-to-charge (m/z) channels 
to show class separations for yeast [40] and plant [41] samples. Pierce et 
al. [42] analyzed organic acid metabolites in urine samples with GC × 
GC–TOFMS by computing the f ratios at every mass-to-charge (m/z) 
channel of each chromatographic datapoint and then summing the f 
ratios along the m/z dimension (i.e., for each datapoint). Then, they 
selected peaks with features (i.e., datapoints) having the largest 
weighted and unweighted f-ratio sums. For peaks indicated by the f-
ratio sums, the ratios of the peak volumes between samples from non-
pregnant women to samples from pregnant women indicated that those 
components significantly differentiated between the two classes.

Guo and Lidstrom [46] applied the same approach with GC × 

GC–TOFMS data to investigate differences in metabolite
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Fig. 1. Top — a pseudocolorized image of a chromatographic region with BTEX peaks. Bottom — a pseudocolorized image of the differences between two aligned chro-matograms 
with red indicating a larger value in the reference image, green indicating a smaller value, and grey indicating nearly equal values [32]. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of the article.)

profiles of methylotrophic bacteria. Mohler et al. [43] used the
same approach to GC × GC–TOFMS data for yeast metabolites and
then performed the Student’s t-test as a check on the volumes
of the peaks indicated by the summed f ratios. Subsequently,
Mohler et al. [47] used the ratios of the largest and smallest sig-
nals in GC × GC–TOFMS data to distinguish datapoints and then
peaks that changed in concert with the dissolved oxygen cycle
of yeast. Vial et al. [35,58] used dynamic peak alignment fol-
lowed by PCA for GC × GC-MS data for several tobacco extracts
and later used correlation with class members to assess the dis-
criminatory power of each datapoint to analyze a large set of
GC × GC–MS chromatograms for tobacco extracts in three dif-
ferent classes. Gröger et al. [45] used multidimensional scaling,
hierarchical clustering, and PCA on datapoint intensities to per-
form clustering and Fisher criterion to identify discriminating
datapoints for illicit drug samples. Gröger and Zimmermann [36]
used t-tests to select significant datapoint features from selected
channels of GC × GC–TOFMS data for partial least-squares (PLS)
discriminant analysis (DA). Ventura et al. [57] recently used mul-
tiway PCA on GC × GC–FID data for maltene fractions of crude
oils.

Hollingsworth et al. [32], Mohler et al. [40,47], Almstetter et
al. [34], Gröger and Zimmermann [36], and others have noted
the importance of data alignment for datapoint feature analysis.
Hollingsworth et al. [32], Almstetter et al. [34], and others have
developed alignment algorithms. Gröger and Zimmermann [36]
implemented alignment and other preprocessing operations with
parallel processing. The scope of this review does not include align-
ment algorithms.

Chromatographic misalignment and peak shape variations pose
serious problems for pointwise cross-sample analysis. The fea-
tures are individual datapoints, so if there is any misalignment
between any pairs of samples, even as small as a fraction of a
datapoint interval, then the features are incorrectly matched. Mis-
alignments, both global and local, naturally occur even in well
controlled conditions. Analytes normally elute over multiple dat-
apoints, so the effects of small misalignments are mitigated, but
misalignment is a fundamental issue that is difficult to elimi-
nate. Like differences due to alignment, peak-shape differences are
erroneously seen as quantitative differences in datapoint features.
Another issue is that pointwise analysis involves many features and
many of those features are highly redundant. Both the number of
features and feature redundancy complicate pattern recognition.
In view of these issues, it can be argued that datapoint features
may be too selective, thereby generating numerous features for
slightly varying retention times within individual chromatographic
peaks.

4. Peak features

Peak features aggregate multiple datapoints with the goal of
characterizing individual analytes (e.g., summing all datapoint 
intensities that are attributed to each detected peak). Peak features 
characterize larger, more meaningful chromatographic structures, 
resulting in fewer features that are less redundant than datapoint 
features. Peak features also are less sensitive to misalignment and 
peak-shape variations than datapoint features because peaks typ-ically 
span many datapoints. However, unlike datapoint features, peak 
features are not implicitly matched. So, after preprocessing and peak 
detection, the detected peaks in each chromatogram that are induced 
by same analyte must be matched. Feature matching is a critical 
challenge for peak-feature analysis.

Gaines et al. [2] provided an early demonstration of using quan-
titative characterizations of individual peaks and groups of peaks (i.e., 
the aggregation of several detected peaks) in GC × GC–FID data to 
fingerprint samples of an oil spill and potential sources in order to 
identify the source of the spill. Their analysis used summed intensi-ties 
of four peaks and nine peak groups that were selected because of their 
suitability for source determination, so the analysis was not 
comprehensive, but was quite advanced given the lack of soft-ware for 
two-dimensional chromatography at the time. Also, the selections were 
performed by hand and so were not automated. Bar charts with the 
intensities of the selected features showed that one potential source 
was compositionally more similar to the spill than the other was.

Mispelaar et al. [38,4] used a much larger number of peaks to 
distinguish samples from different oil reservoirs with GC × GC–FID. 
Their peak detection found about 6000 peaks per chromatogram. They 
used retention-time based alignment and filtering to match 3904 peaks, 
but the results of their multi-variate analysis (MVA) were 
unsatisfactory. They attributed the poor initial results to an inadequate 
number of samples with many non-informative peaks and peak 
detection, quantification, and matching errors. They then selected 292 
peaks using an automated criterion for the relative standard deviations 
(RSDs) between duplicate samples to indicate peak detection and 
quantification errors. Most of the automatically selected 292 peaks were 
in regions of the chromatogram with lower peak density. Then, they 
manually selected 65 peaks for relevance and absence of interference. 
This small fraction of the peaks (about 1% of the detected peaks) was 
adequate for clustering the samples according to reservoir, but the 
feature reduction is indicative of the difficulties of reliable peak 
detection and matching. Such selective processing could exclude highly 
informative peaks.

In their work with mouse 
spleen samples, Shellie et al.
[39] matched peaks in each 
chromatogram to reference 
data using
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tolerances on retention times and mass spectral matching simi-
larity. The TIC of each peak that matched the same reference peak
was placed on the same row in a matrix with a column each chro-
matogram. They did not report how many peaks were detected or
how many of the detected peaks were matched. Student’s t-tests
were used to indicate the eleven metabolites exhibiting the most
significant differences between obese and control mice.

Qiu et al. [44] performed GC × GC–FID on volatile oils from
Qianghuo, a traditional Chinese medicine, from five regions. They
did not report parameters for rejecting peaks with low SNR nor
the number of peaks detected. They developed and implemented
peak alignment and matching methods (using retention times rel-
ative to reference peaks) to create a matrix with 1544 peaks in
fifteen samples. PCA analysis produced three clusters, with sepa-
rate clusters for samples from two of the five regions. They used
variable importance in the projection (VIP) [86, p. 397] to identify
potential marker compounds, finding some statistically significant
features, then used GC × GC–TOFMS for chemical identification of
those compounds.

Wardlaw et al. [85] developed an algorithm to track peaks
between similar samples based on retention times. The algorithm
tracked about 1400 of about 4500 peaks in GC × GC chromatograms
from oil samples from the reservoir, sea floor, and sea surface.

Analyzing human serum with GC × GC–TOFMS, Oh et al. [87]
developed a peak sorting method to recognize peaks from the
same metabolite in different chromatograms. Their algorithm
used several search criteria with retention times and mass spec-
tra, with options to eliminate non-target peaks. Peaks with low
signal-to-noise ratio were discarded during peak detection. The
matched peaks showed high correlation for retention times and
mass spectra, but only 105 peaks were matched across all fifteen
chromatograms, even with five replicates for each of three samples.

Gaquerel et al. [48] used GC × GC–TOFMS to analyze the effect of
oral secretions on volatile plant emissions. Peak detection yielded
about 600 peaks in each of the 108 samples (subject to a threshold
SNR of 10). The authors noted that inconsistencies in the numbers of
the detected peaks in each chromatogram complicated matching.
In each of three sample periods, the peak set of the chromatogram
with the largest number of detected peaks was used as reference
data for matching (with the matching procedure developed by Shel-
lie et al. [39]), reducing the number of matched peaks to about
400, which then were corrected for false positives from the align-
ment and matching procedure. ANOVA followed by another manual
check for false positives from the peak alignment and matching
was used to select about 15% the peaks for MVA with hierarchical
clustering analysis (HCA) and PCA.

Li et al. [49] analyzed blood plasma with GC × GC–TOFMS. They
used a mass spectral filter to extract peaks for trimethylsilyated
metabolites, then applied a peak alignment method and a peak
matching algorithm to create a matrix with 492 metabolites in 79
chromatograms. They tried several modeling methods, including
PLS-DA, in which some problems that were attributed to miss-
ing values from peak matching were resolved by additional peak
filtering. Then, VIP was used to indicate potential biomarkers.

Reichenbach et al. [88] developed Smart TemplatesTM for peak
matching. The template records a prototypical pattern of peaks
with retention times and associated metadata, such as chemical
identities and compound-group membership. Then, the template
pattern is matched to the detected peaks in subsequent chro-
matograms and the metadata are copied from the template to
identify the matched peaks. The matching process explores the
space of affine geometric transforms to maximize the number
of matched peaks and minimize the residual geometric error.
Smart templates employ rule-based constraints (e.g., multispec-
tral matching) to increase matching accuracy. Smart templates
also carry other structures, such as text and chemical-structure

Fig. 2. A pseudocolorized image of an LC × LC chromatogram of a urine sample. The open 
circles indicate the retention times of the expected peaks recorded in the template. The 
outlines indicate the detected peaks and the filled circles indicate the retention times of 
the apexes of the detected peaks that are matched by the template [88].

annotations and polygonal regions (which can be used for region 
features, described below). They demonstrated the approach and 
associated methods on urine samples analyzed by LC × LC with a 
ultraviolet (UV) diode array detector (DAD). Fig. 2 illustrates tem-plate 
peak matching with a template derived from the detected peaks of 
one chromatogram matched to the detected peaks of another 
chromatogram.

Cordero et al. [89] analyzed volatile fractions of roasted hazel-nuts 
with GC × GC–MS, then performed peak matching with templates in two 
different ways. In the first approach, they aligned and summed the 
chromatograms, then created a feature template comprised by the 411 
peaks detected in the cumulative chro-matogram. That template then 
was matched to each individual chromatogram, with matching rates 
ranging from 68% to 79%. In the second approach, they performed a 
sequential template matching that used both retention-time patterns 
and mass spectral matching criteria. At each step of the sequence, 
unmatched peaks were added to build a comprehensive template. At the 
end of the sequence, the comprehensive template was matched to each 
chromatogram and any peak matching with at least two chromatograms 
were retained in a consensus template. The consensus template 
contained 422 peaks and the matching rates ranged from 52% to 78%, 
with 196 peaks matching for all nine chromatograms. For both peak 
match-ing methods, the feature fingerprints of samples from nine 
regions were sifted for the largest normalized intensities and many of 
the indicated compounds have a known role in defining sensory prop-
erties.

Castillo et al. [55] used GC × GC–TOFMS to analyze a vari-ety of 
samples for metabolomic characteristics. They developed a processing 
sequence of peak detection, matching, filtering, nor-malization, and 
identification. The matching algorithm used a scoring metric to choose 
some matches over others. For a set of
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60 serum samples, almost 15,000 prospective compounds were
filtered to 1540 on the basis of matching a sufficient number of
chromatograms, then to 1013 compounds by mass spectral and
chromatographic constraints. The resulting feature vectors were
analyzed by PCA, which separated samples by their storage tem-
perature.

Koek et al. [56] evaluated the analyst and computer time
required to process GC × GC–TOFMS datasets for mouse liver sam-
ples to produce a table of 170 metabolites in 29 samples. The
analysis required approximately 50 h of analyst time and 60 h of
computer time, with substantial analyst time required for opti-
mization and construction of the reference target table and dealing
with problems of missing peak values. These times are indicative
that reliable peak matching, even with recent software for GC × GC,
is not yet automated. Subsequently, they evaluated the resulting
metabolite profiles with PCA and PCA-DA.

Peak detection errors as well as the inherent ambiguity of
matching both contribute to make comprehensive peak match-
ing (i.e., matching all peaks) across many samples intractable.
Trace peaks may be detected in some samples, but not in oth-
ers. Coeluting analytes may be detected as separate peaks in some
chromatograms but as one peak in other chromatograms. The
peaks of different analytes may be incorrectly matched, especially
if constituents differ from sample to sample. To overcome these
challenges, researchers filter the peaks that are used for cross-
sample analysis. However, such filtering is unreliable and difficult
to automate. And, to the extent that peaks are correctly filtered,
the analysis is no longer truly comprehensive. Despite extensive
research, methods for automated peak matching still are error-
prone and/or not comprehensive. Despite these problems, peak
features can be effectively used in many applications for non-
targeted cross-sample analysis.

5. Region features

Region features characterize multiple datapoints (e.g., summing
the intensities at all datapoints in each region). Like peak features,
region features can characterize larger, more meaningful chro-
matographic structures than datapoint features, resulting in fewer
features that are less redundant. Like peak features, region features
are less sensitive to misalignment than datapoint analysis.

For non-targeted analysis, the feature regions should be defined
to cover the entire chromatographic space in which analytes are
present. When used for cross-sample analysis, the same regions in
different chromatograms are implicitly matched, thereby avoiding
the matching problem that is inherent with peak features. How-
ever, either the chromatograms should be aligned or the regions
should be adjusted geometrically so that the same regions in differ-
ent chromatograms encompass the same analyte(s). As geometric
shapes, regions are amenable to geometric transformations to fit
different chromatograms in cases of variable retention times.

Two concerns with region features are that a region may encom-
pass more than one analyte and that one analyte may be spread
across more than one region. In the first case, selectivity is reduced
as compared with peak features (although peak features also may
not separate coeluted peaks). In the second case, multiple features
for a single analyte are more susceptible to errors related to mis-
alignment as compared with peak features (although peak features
also may incorrectly split analyte peaks).

Mispelaar [4,38] created a hand-drawn mesh of contiguous
polygons to subjectively encompass different groups of interest in
diesel samples and demonstrated the utility of geometric trans-
formations to better fit different chromatograms. Fig. 3 illustrates
a similar mesh for GC × GC–FID [90] with automatically drawn
vertical lines at linear retention indices based on the n-alkanes

Fig. 3. A mesh of regions with automatically drawn vertical lines at linear retention
indices based on the n-alkanes and hand-drawn crossing lines to separate compound
groups [90].

and hand-drawn lines to separate compound groups. As Mispelaar 
noted, some prior knowledge of the sample is required to define regions 
related to its components and component groups. And, as can be seen, 
there are regions with multiple analytes and analyte peaks spread across 
multiple regions.

To quantify weathering of an oil spill by GC × GC–FID, Arey et al.[3] 
created a grid with region boundaries defined by computed con-tours of 
hydrocarbon vapor pressure and aqueous solubility. With this approach, 
no prior knowledge of the nature of the sample is required, but regions 
may contain multiple analytes and ana-lyte peaks may straddle multiple 
regions. To mitigate the effect of misalignment, they used trapezoidal 
weighting functions at the borders between regions. With contour lines 
that are roughly orthogonal, the grid can be remapped naturally to a 
rectangular array and colorized according to intensity for convenient 
visualiza-tion. They applied the analysis to investigate different 
weathering processes on oil spills, including evaporation, dissolution, 
biodegra-dation, photodegradation, and other processes. Wardlaw et al. 
[85] used these same lines to warp chromatographic images.

To analyze Chinese medicine volatile oils with GC × GC–TOFMS, Qiu 
et al. [44] used integration in four regions (mostly, but not fully covering 
the analytes) to compute averages and show differences among five 
geographical classes. Mullins et al. [91] used seven large regions to 
characterize compound groups in downhole fluid anal-ysis with GC × 
GC–FID and GC × GC–TOFMS. They plotted ratios of the summed peak 
intensities within each region in a spider dia-gram to visualize 
similarities and differences. Betancourt et al. [92] used spider diagrams 
to visualize features for nine large compound-based regions and 
subdivisions of those regions split by retention indices. Ventura et al. 
[93] extended the approach to twelve regions. Vaz-Freire et al. [50] 
divided chromatograms from olive oil samples into twelve rectangular 
regions, then performed ANOVA and PCA with the regional features.

The principal issue with region features is that selectivity is 
reduced to the extent that peaks of multiple analytes are included in the 
same region. For some applications, such as petroleum anal-ysis, the 
goal may be comprehensive group-type analysis, so loss of selectivity 
within groups is not problematic. However, the loss of selectivity could 
be a problem in many applications, especially if a critical trace analyte is 
in the same region as a predominant analyte that is irrelevant to the 
application.

6. Peak-region features

The final type of feature surveyed in this review is the peak-

region. Peak-region features attempt to define one region per peak. This 
approach seeks to achieve 
the one-feature-to-one-analyte 
selectivity of peak features 
but with the implicit 
matching of region features.



i n s p i r a t i o n m e e t s i n n o v a t i o n !


Your supplier of GCXGC and LCXLC software

Schmarr et al. [53,54] and Reichenbach and co-workers [51,52,1]
described similar approaches to defining regions for individual
peaks detected across multiple samples. Schmarr and Bern-
hardt indicated that this general approach is common for 2D
gel electrophoresis. After preprocessing, including alignment, the
chromatograms are combined (e.g., simply by addition or other
fusion operations [94]) to form a single chromatogram that is reflec-
tive of all of the constituents in all samples. Then, the boundaries
that delineate each peak are recorded as a region in a template. That
template is then geometrically mapped back to each chromatogram
and each region defines a feature for each chromatogram. The fea-
tures are comprehensive, accounting for every analyte, and feature
matching is implicitly performed by the retention-time mapping.

Schmarr and Bernhardt [53] analyzed 32 samples of volatiles of
different fruits by GC × GC–MS. They performed baseline correction
with the rolling-ball method, then manually generated warp graphs
to determine warping transforms to align 31 chromatograms to a
reference chromatogram. Then, each of the chromatograms was
aligned by the warping transform and combined using a weighted-
mean “union fusion” [94]. They manually detected more than 700
spots indicative of peaks in the fused chromatogram. Then, the spot
patterns were mapped back to each chromatogram according to
the inverse of its warping transform and the intensities for each
region in each chromatogram were computed. The software pack-
age that they used was optimized for gel electrophoresis rather
than GC × GC, so much of the processing was manual, requiring
about 5 h of an analyst’s time for the 32 samples. They used HCA
and PCA with the resulting peak-region features to cluster sam-
ples. The different fruits (apples, pears, and quince) formed clear
clusters. The two pear varieties and some of the six apple vari-
eties formed sub-clusters. The mass-spectral signatures were used
for compound identification of spots which were statistically rele-
vant for differentiation. Using a similar approach for analyzing red
wines subjected to microoxygenation (MOX), Schmarr et al. [54]
were able to differentiate MOX treatments and specific varietal
and technological effects. They were able to identify areas in the
2D chromatograms that were most responsible for discrimination
among different MOX treatments and the loadings of individual
aroma compounds suggested a set of markers for the MOX-induced
modifications of volatiles.

Cordero et al. [51] analyzed samples of coffees and junipers by
GC × GC–MS. After preprocessing including peak detection, they
identified peaks that could be matched reliably across all chro-
matograms. These reliable peaks were the basis of a registration
template with mass spectral matching rules that then was used to
determine a geometric transform to align the chromatograms. After
alignment, the chromatograms were summed to create a cumu-
lative chromatogram. In three chromatograms of coffee samples,
about 1700 peaks were detected, about half of which were reli-
able. They manually drew a mesh of about 1100 regions which
were combined with the registration peaks to create a feature tem-
plate that could be matched to individual chromatograms thereby
transforming the regions to maintain their positions relative to the
reliable peaks. They sifted the features by intensity, standard devi-
ation, and relative standard deviation to select relevant features
but did not perform MVA because of the small number of samples.
Many of the indicated compounds were known botanical, techno-
logical, and/or aromatic markers for coffee. For the analysis of five
chromatograms of juniper samples, there were about 100 reliable
peaks and 727 peak-regions were drawn. Reichenbach et al. [52]
used the same approach for 39 urine samples analyzed by LC × LC.
Then, they performed classification with SVM and k-NN, evaluating
the performance using cross-validation.

Reichenbach et al. [1] analyzed data from GC × GC with high-
resolution mass spectrometry (HRMS) of samples from breast
cancer tumors. There were eighteen samples each from different

Fig. 4. Cumulative chromatogram for eighteen breast-cancer tumor samples over-laid with 
the feature template (registration peaks shown with dark ovals and region features shown 
with red outlines). The color bar shows the logarithmic pseudocol-orization mapping [1]. 
(For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of the article.)

individuals, with six samples each for grades 1–3 as determined by a 
cancer pathologist. They followed the same approach as Cordero et al. 
[51] except that the process, including drawing the regions around the 
peaks detected in the cumulative chromatogram, was performed 
automatically by newer software. 
About 3300 peaks were 
detected in each of the 
eighteen individual 
chromatograms, but only 
thirteen were reliable across 
all eighteen chromatograms.
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Note that reliability was defined as bidirectional matching between
all possible pairs (more than 300 matches for each common peak).
In the cumulative chromatogram, more than 3300 peak-regions
were defined. Fig. 4 shows the cumulative chromatogram overlaid
with black ovals for the reliable peaks used for registration and
red outlines for the peak-regions. They applied several machine
learning methods with the peak-region features to classify sam-
ples by tumor grade and to indicate potential biomarkers for tumor
grade which then were investigated using the high-resolution mass
spectra.

The peak-region approach is more comprehensive than using
reliably matched peak features and is more selective than region
features. As with the other feature methods, misalignment is a
potential source of errors. As with peak features, peak detection
errors, such as unseparated coelutions and incorrectly split peaks,
are another source of errors for peak-region features.

7. Conclusion

A common goal of chemical analysis is to compare samples,
either for a few specific compounds (targeted analysis), for groups
of compounds (group-type analysis), or for all compounds (i.e., non-
targeted analysis). The key to comparative analyses is to establish
correspondences between features of different data sets, e.g., rec-
ognizing that a peak in the data for one sample and a peak in the
data for another sample are induced by the same compound. Estab-
lishing correspondences — feature matching — is necessary before it
is possible to perform comparisons and pattern recognition across
sample sets.

Targeted analyses and group-type analyses are more straight-
forward than non-target analyses. In targeted analyses, the
compounds of interest are known, so the chromatography can be
tailored to provide selectivity for those compounds and the data
processing methods can be refined for detecting and recognizing
the features for those compounds. For group-type analysis, the
method need not be selective of every individual analyte, so many
problems of feature generation (e.g., peak unmixing) and matching
can be avoided. Comprehensive non-target analyses are more dif-
ficult because the most relevant compounds are unknown, so the
chromatography and data processing cannot be tuned specifically
for individual compounds or for groups of compounds.

Non-targeted cross-sample analysis is especially difficult
because it requires the analysis of all analytes in all chromatograms
of a sample set. Applications of non-targeted cross-sample analysis
include sample classification, chemical fingerprinting, monitoring,
sample clustering, and chemical marker discovery. Comprehen-
sive two-dimensional chromatography is a powerful technology
for separating complex mixtures and so is well suited for com-
prehensive non-targeted analysis, but fully extracting chemical
information from large and complex datasets is challenging and
the subject of ongoing research. And, the difficulty of comparative
analyses increases with the size of the sample set.

Feature matching for comprehensive two-dimensional chro-
matography can be based on retention times, spectral signature,
detected intensity, and/or other characteristics of features. Past
research on non-targeted cross-sample analysis with compre-
hensive two-dimensional chromatography has demonstrated the
usefulness of qualitative visualization, individual datapoints,
detected peaks, chromatographic regions, and comprehensive
peak-regions.

Each type of feature has advantages and disadvantages. Visual-
ization is simple and intuitive, but is not quantitative, important
differences may not be visible, and working with large sample sets
is difficult. Datapoint features are highly selective and implicitly
matched across aligned chromatograms, but they are subject to

misalignment errors and generate a large number of features, many of 
which are redundant. Peak features characterize individual ana-lytes and 
so are especially consistent with analytical goals, but peak matching is an 
intractable problem. Region features are more attuned to meaningful 
analytical characteristics than datapoint fea-tures and are easier to 
match across samples than peak features, but they may not be as 
selective as datapoint or peak features. Peak-regions define a region for 
each peak across chromatograms and so aim for selectivity and accurate 
feature matching, but still are subject to errors from misalignment and 
peak detection failures.

Future research will refine, compare, and combine these approaches. 
There has been little research to deeply examine the variables that affect 
feature generation and matching in the dif-ferent approaches and to 
validate performance in cross-sample analyses. Advances in instrument 
technologies could contribute to improved feature generation and 
matching, e.g., with increased repeatability and reproducability, greater 
mass spectrometric accu-racy, and more effective column sets. Feature 
generation and matching might be improved by better preprocessing 
methods, especially for detection of coeluted peaks, but also for baseline 
correction and alignment. Likewise, more research is needed to compare 
the performance of different approaches for feature gen-eration and 
matching in different applications. Ultimately, a hybrid approach, using a 
combination of different approaches, may be most effective e.g., peak 
features for peaks that can be reliably matched, and peak-region, region, 
or datapoint features for other chromatographic data. Again, such 
combined approaches require a better understanding of the variables 
that affect the performance of the different approaches.
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