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ABSTRACT A peakhasmanyfeaturessuchaspeaklocation,area,volume,shapegtc.
In this paper,only peaklocation(the coordinatef the pixel with the largest

Comprehensive two-dimensional gas chromatography (GCxGC) is value within the peak)is usedfor matching.As such,the peaktemplateand
a new technology for chemical separation. Peak template match-thetargetpeaksetcanbeabstractly
ing is a technique for automatic chemical identification in GCXGC representetly two point sets in two-dimensionapace.
analysis. Peak template matching can be formulated as a Largest  Let P= {p;(x:, ;) }"" be the point templatand Q =
Common Point Set problem (LCP). Minimizing Hausdorff dis-  {g;(u;, v;)}" ,_, bethetargetpointset. The peaktemplatematch-
tances is one of the many techniques proposed for solving the ing problemcanbe posedastheLargestCommonPointSet(LCP)
LCP problem. This paper proposes two novel strategies to searchproblem [3, 4].
the transformation space based on Markov Chain Monte Carlo
(MCMC) methods. Experiments on seven real data sets indicate o ] ]
that the transformations found by the new algorithms are effective tial directedHausdorff distance d*;; , transformation space
and searching with two Markov chains is much faster than search- b hT ,da]?d the de5|_red number of points in Pto
ing with one Markov chain. e matched k, compute:

Given point templaté, target point set Q, par-

min {d*’“H(t(P), Q)} :

Generally, P may not be congruentto @ or any subsetof Q. The above
formulationis merelyintendedto matcha subsetof P to a subsetof ) and
. newtechnlagyforchemical sepraton hat provides an ader- 0TS 1 SanceThe soitonto e C7 prebiny ¢ ansformaton.
of-magnitude increase in separation capacity over traditional GC P P )

[1, 2]. GCxGC separates chemical species with two capillary col- The partialdirectedHausdorff from Pto @ is defined as [5]:
umns interfaced by two-stage thermal desorption. Given a chem- % k mi _
ical sample, the GCxGC output can be visualized as a 2D image, d "u(P, Q)= % fz%lcg I =l
W|th p|Xe|S arranged so that the X'aX.|S (|eft-t0-rlght) and the Y- Where”p _ q” is the Euclideandistancebetweenpointp and point q, and
axis (bottom-to-top) are the elapsed times for the first and second i ax* meanstaking the k** largestdistance The par-tial directedHausdorff
column separation respectively. Each pixel value indicates the ratedistanceis a good choiceherebecauset hasthe effect of matchingpartof P
at which molecules are detected at a specific time. Each chem-tg partof Q. In addition, it is not requiredto specifywhich partof Pis to be
ical substance in the chemical sample produces a small peak ofmatchedWhen k = | P| the partiadirectedHausdorff distanceecomes
cluster of pixels in the image with values that are larger than the .
background values. the directedHausdorffdistancewhich is denotedby d #(P, Q). The partial
The goal of GCXGC analysis is to separate, quantify, and iden- directedHausdorffdistancecan be computedin time O((m + n) log(m +
tify specific chemicals in a sample. The major image analysis tasks n)) [51' o . . .
include segmenting the image into individual peaks and back- _ Minimizing Hausdorffdistancess one of the many techniquesproposed
ground, measuring peaks, and identifying the chemical for each for §o!vmgthe LCP prqblgm.ThlstechnlquajsesHaus-dorﬁ dlstanqe(or its
peak of interest. GCxGC images easily contain several thousandva”at'ons) as the _S|m|Iar|ty mgasureandsearcheshe t_ransformatlonspace
chemical peaks. Manually annotating the peaks is tedious andfor a transformationthat min-imizes the Hausdorff distance. The search

time-consuming. Peak template matching offers a way to speedstrategies_ proposed in the literature includg exact computation [6, 7],
the annotation process rasterizationof the upperenvelopeof Voronoi surfaces[5], transformation

A peak templateP is a set of peaks whose corresponding spacesub-division[7], multi-instanceearning]8], etc.

1. INTRODUCTION

Comprehensive two-dimensional gas chromatography (GCxGC) is

chemicals are known. A target peak &ets a set of peaks whose In this paper,we proposeusing Markov chain Monte Carlo (MCMC)

corresponding chemicals are to be determined. Giveand Q, methodsto searchthe transformationspace. MCMC methodsare general
the objective of template matching is to establish as many corre- tools for simulating comple)'( digtributions by ergodic Markov chains [9].

spondences as possible from the peak®ito the peaks inQ. Whenusedfor solving optimization

After the correspondences are established, the information carried
by source peaks is copied to target peaks and the chemical identi-
fication is achieved.
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problems, MCMC methods map the objective functions to some T quickly for a good start point at the course resolution and pro-
probability distributions and search the parametric space for a pointcessit; starts from that point and searches its neighborhood at the
that optimizes the objective function [9]. fine resolution.

2. THE MCMC-BASED SEARCHING ALGORITHMS 3. EXPERIMENTAL RESULTS

In the LCP problem, the goal is to minimize the objective function 3.1. Data sets

d% (t(P), Q). We define a distribution on a finite transformation

- The seven data sets, summarized in Table 1, were acquired at three
spacel’ as:

different laboratories on three different GCxGC instruments. Each
data set has several images generated from the same chemical sam-
ple or from related samples with the same chemicals. Selected
peaks in each data set were annotated usiafmage™ soft-

ware [11]. The selected peaks form a peak set for each image.
Peak correspondences across images in each data set were estab-
lished for testing the effectiveness of the algorithm. Also, for com-
putational stability, peak locations are normalized. The normaliza-
tion is done for each data set separately. (et i1, ) and(oz, oy)

exp(—dj (t(P), Q))

Z
wheret € T andZ is a normalization factor such thfif. 7 (t)dt =
1.0.. Becauser(t) anddy; (t(P), Q) are inversely related, if some

¢ maximizesr(t), it minimizesd}; (t(P), Q). So the solution to
the LCP problem igirgmaz 7 (t).

w(t) =

2.1. Searching with one Markov chain

In this paper, the Metropolis-Hastings algorithm [10] is used to
search the transformation spa€eby sampling. The algorithm
sampled” according tar by performing random walk on a Markov
chain whose state spaceds The walk starts with some initial

transformation (state) and makes each transition as follows: a new,

transformatiort’ is proposed from an uncorrelated Gaussian distri-

be the mean and standard deviation of the peak locations in some
data set. Then, the peak location y) in that data set is normal-
ized as:

— __T—pg
("'m+‘7y)/2

’
T
/
{ y =

where(x’,y") is the new peak location.

Y—Hy
(oz+oy)/2

bution N (¢, ¥:), where the mean valuds the current transforma-

tion andX; is a diagonal covariance matrix. The new transforma- Table 1. Data sets

tion ¢ will be accepted with the Metropolis-Hastings acceptance [Data set Number of images| Number of selected
probability: peaks
, D2287 sdalk| 3 15
Ai(#') = min {1, (t)Gv (t) } D2287sdgas 3 580

(G (t) Doixin 3 26
GCC2002 12 14
whereGy (t) andG.(t') are the pdf's ofV (¢', /) and N (¢, 3;). Linearity 5 is
If iz (' (P), Q) < di (t(P), Q), ' is always acceptedd. (t') = NYSDH 5 10
1.0). PCB 4 17

In the experiments presented in Section 3, the sEnweused
for every state. In such a cas#,(t') is simplified as:

"} = min exp(d —dy .
A(t') = min {1, exp(dy (¢(P), Q) — dir (¢'(P), Q) | 32 Esimating”

2.2. Searching with two Markov chains The transformation model used in this paper is global constrained
affine transformation. The global constrained affine transforma-
One difficulty with the above searching algorithm is how toXset

If standard deviations iX; are too large, the proposed new trans-
formation stays away from the current transformation with high { hz(=0.0)

Sy

Uq
Vg

Sz

hy

tion from p(xp, yp) 10 g(ug, vq) is:
_ Lp 2
probability. As a consequence, the Markov chain tends to make } - { } { Yp } t [ ty }
big jumps in the transformation space, overshooting the global op-
timal transformation. On the other hand, if standard deviations in with i, set t00.0 because the coordinates (first column separa-
3 are too small, the proposed new transformation may oscillate tion time) are independent of tiyecoordinates (the second column
around a local optimal transformation [9]. separation time) in GCxGC images. Experimental results (not re-
The selection of; becomes easier when using two Markov ported here) indicate that the above transformations work well for
chains instead of one. Then, the searching algorithm runs two largely removing image-to-image distortions.
Metropolis-Hastings processeB, and¥®;, simultaneously. Pro- Given the global constrained affine transformation model, the
cessesR, andR; use two different covariance matricés, and complexity of finding a matching primarily depends on the ranges
¥, with larger standard deviations fat, and smaller standard  that the transformation parameters vary. If all five parameters vary
deviations forY;. The start transformation dR; is set to the freely, searching for a solution is expensive. However, experiments
best transformation th&, has found so far after each fixed num- show that the least-squares optimal transformations are clustered
ber of steps. The algorithm can be roughly thought of as a two- in the transformation space. Consequently, a search over a small
level multi-resolution searching, where procé&slooks through region typically will find a good matching.
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Given a training data set, optimal transformations are com- thath<0> N(0,%)dt > certain probability threshold. Here,
puted from each peak set to every other peak set based on leasthe accuracy is defined as the neighborhdi{d) around a target
squares estimation. An uncorrelated Gaussian madel, ) is point ¢. Template poinp is said to be matched to target poinif
then fit to the distribution of the resultant transformations using y lies in E(q). Itis clear that the smaller th&, the more accurate
common techniques such as those in [12]s setto be arectangu-  the matching.
lar region A in the transformation space, whefe N (p, X)dt >
certain probability threshold andt is a variable defined in
transformation space. Figure 1 and 2 illustrate the spatial distri- 3.4. Effectiveness of transformations found by the MCMC-
butions of the scale parameters and translation parameters of théased searching algorithms

transformations generated from the seven data sets. ) )
For point templateP and target point sef), assume that the

MCMC-based searching algorithms return transformatigrand

13 T T
8 sagms based ort; the point correspondences betwdemand(Q are then
12 O . GE,'%E’:‘.’E i computed. To evaluate the effectiveness pfds (t5(P), Q) is
L Ve . computed and compared &y (t,(P), Q), wheret, is the least-
11 o § . " . ' squares optimal transformation. The experimental results on the
R T b seven data sets are reported in Table 2. Note that when one data
1 20 "B o BREP Hseano b Tt e set is used for testing, all other six data sets are used as training
& T g;% I« data for estimating the search range and the standard deviations.
09 e - P : o e x ; oo Also, within the testing data set, one peak set is selected to be the
= o & e T template, and all others are target sets. Table 2 only reports the
08 g K - average distances for each data set. The average number of steps
x - used to find the transformations are described in Section 3.5. The
07 ol S results show that the transformations found in limited steps by the
algorithms work well compared to the least-squares optimal trans-
06 formations. For four out of the seven data sets, the algorithms
0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02 -
sx found better transformations in terms &f;, which is the objec-

tive function. For the other data sets, the results of the algorithms

. o are comparable to the least-squares optimal transformations.
Fig. 1. Scale parameter distribution.

Table 2. Effectiveness of the transformations found by the

02 " " ozee7 sdik - MCMC-based searching algorithm.
D2887 sdgas  x
02 : eLcé’é%BE 1 - -
* * I:R(esagH ° Data set dH (tO(P)v Q) dH (tf (P)a Q)
ot P PRt D2287 sdalk| 0.0382 0.0369
01 ! _— ol D2287 sdgas 0.0436 0.0385
R AL N Doixin 0.0415 0.0430
. 005 o uo);ué;ﬂf;j% L. GCC2002 0.0902 0.0728
o o Lo Tk ) Linearity 0.0711 0.0613
o AT foxdd o, . NYSDH 0.0404 0.0422
005 25- i SN o PCB 0.0492 0.0498
0.1 = “*:%* X ?
015 e **x < 3.5. Computational efficiency
02— —— Y TR The experiments in this section evaluate and compare the compu-
™ tational efficiency of the two MCMC-based searching algorithms.

Because the behavior of MCMC methods depends on random
) ) o number generation and thus varies from one run to another, the
Fig. 2. Translation parameter distribution. experiments run the two algorithms 20 times under the same con-
figuration and report only the average results.
The average numbers of steps that the two algorithms take to
3.3. Selecting the standard deviations find t; (see Section 3.4) are reported in Figure 3 and 4. For the
results in Figure 3, both algorithms start with identity transforma-
tion. For the results in Figure 4, both algorithms start with some
identical randomly generated transformation7n The results
clearly indicate that searching with two Markov chains is statis-
tically much more efficient than searching with one Markov chain.

ZOEX | EUROPE

Your supplier of GCXGC and LCXLC software

In the experiments described in Section 3.4 and 3.5, when one
Markov chain is used, the standard deviation&£d$ set to those

of the covariance matrix of the Gaussian distribution that models
the transformation space (See Section 3.2). When two Markov
chains are used,, is set to be thé&. For %, the standard de-
viations are selected based on the desired matching accuracy. For
example, if the desired matching accuracyFiswe setY; such
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Fig. 3. Comparison of the two algorithms with the initial state
being identity transformation.
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Fig. 4. Comparison of the two algorithms with the initial state
being a random transformation i

4. CONCLUSION

Peak template matching is an automatic chemical identification
method for GCxGC. This paper proposes two novel MCMC-based
searching algorithms for solving the problem. Experiments indi-
cate that the algorithms work effectively. On average, the algo-
rithms find transformations with smaller partial directed Hausdorff
distances than the least-squares optimal transformations. Experi-
ments also show that searching with two Markov chains is statisti-
cally much faster than searching with a one Markov chain.

Our future work includes:
o trying different formulations of the distribution(¢),

e using more data sets to test the searching efficiency of the
searching algorithms, and

e adjusting standard deviations based on some local proper-
ties of the transformation space to accelerate the searching. Z O E X
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